scholarly journals Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

Author(s):  
Julia S. Joswig ◽  
Christian Wirth ◽  
Meredith C. Schuman ◽  
Jens Kattge ◽  
Björn Reu ◽  
...  

AbstractPlant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.

2012 ◽  
Vol 39 (10) ◽  
pp. 1757-1771 ◽  
Author(s):  
Rachael V. Gallagher ◽  
Michelle R. Leishman

2016 ◽  
Vol 74 (4) ◽  
pp. 941-954 ◽  
Author(s):  
Christina A. Frieder ◽  
Scott L. Applebaum ◽  
T.-C. Francis Pan ◽  
Dennis Hedgecock ◽  
Donal T. Manahan

Abstract Physiological increases in energy expenditure frequently occur in response to environmental stress. Although energy limitation is often invoked as a basis for decreased calcification under ocean acidification, energy-relevant measurements related to this process are scant. In this study we focus on first-shell (prodissoconch I) formation in larvae of the Pacific oyster, Crassostrea gigas. The energy cost of calcification was empirically derived to be ≤ 1.1 µJ (ng CaCO3)−1. Regardless of the saturation state of aragonite (2.77 vs. 0.77), larvae utilize the same amount of total energy to complete first-shell formation. Even though there was a 56% reduction of shell mass and an increase in dissolution at aragonite undersaturation, first-shell formation is not energy limited because sufficient endogenous reserves are available to meet metabolic demand. Further studies were undertaken on larvae from genetic crosses of pedigreed lines to test for variance in response to aragonite undersaturation. Larval families show variation in response to ocean acidification, with loss of shell size ranging from no effect to 28%. These differences show that resilience to ocean acidification may exist among genotypes. Combined studies of bioenergetics and genetics are promising approaches for understanding climate change impacts on marine organisms that undergo calcification.


Flora ◽  
2019 ◽  
Vol 254 ◽  
pp. 113-121 ◽  
Author(s):  
M. Dalle Fratte ◽  
G. Brusa ◽  
S. Pierce ◽  
M. Zanzottera ◽  
B.E.L. Cerabolini

Author(s):  
Mariano E. Malvé ◽  
Sandra Gordillo ◽  
Marcelo M. Rivadeneira

There is growing concern about the impact of contemporaneous ocean acidification on marine ecosystems, but strong evidence for predicting the consequences is still scant. We have used the gastropod Trophon geversianus as a study model for exploring the importance of oceanographic variables (sea surface temperature, chlorophyll a, oxygen, calcite and pH) on large-scale latitudinal variation in mean shell length and relative shell weight. Data were collected from a survey carried out in 34 sites along ~1600 km. Neither shell length nor relative shell weight showed any monotonic latitudinal trend, and the patterns of spatial variability were rather complex. After correcting for spatial autocorrelation, only pH showed a significant correlation with mean shell length and relative shell weight, but contrary to expectations, the association was negative in both cases. We hypothesize that this could mirror the negative effect of acidification on growth rate, which may cause larger asymptotic size. Latitudinal trends of body size variation are not easy to generalize using ecogeographic rules, and may be the result of a complex interaction of environmental drivers and life-history responses.


2015 ◽  
Vol 21 (1) ◽  
pp. 109-133 ◽  
Author(s):  
Surender Kumar ◽  
Shunsuke Managi

AbstractClimate and institutions might be crucial in lowering the vagaries of climate change impacts in terms of productivity. This study measures the relationships of productivity measures adjusted for the regulation of carbon emission and institutions together with climate change throughout the world. This paper finds that there is higher potential for reduction of CO2emissions in developing countries at lower cost. However, the cost to reduce emissions lowers their growth potential in terms of lost productivity growth. Better institutions help to lower the negative impacts of climate change by improving the process of technological adoption in developing countries. Climate change reduces the productivity growth in developing countries by lowering the process of technological adoption, and better institutions result in higher productivity.


2020 ◽  
Vol 17 (20) ◽  
pp. 4981-4998
Author(s):  
Maitane Iturrate-Garcia ◽  
Monique M. P. D. Heijmans ◽  
J. Hans C. Cornelissen ◽  
Fritz H. Schweingruber ◽  
Pascal A. Niklaus ◽  
...  

Abstract. Plant traits reflect growth strategies and trade-offs in response to environmental conditions. Because of climate warming, plant traits might change, altering ecosystem functions and vegetation–climate interactions. Despite important feedbacks of plant trait changes in tundra ecosystems with regional climate, with a key role for shrubs, information on responses of shrub functional traits is limited. Here, we investigate the effects of experimentally increased permafrost thaw depth and (possibly thaw-associated) soil nutrient availability on plant functional traits and strategies of Arctic shrubs in northeastern Siberia. We hypothesize that shrubs will generally shift their strategy from efficient conservation to faster acquisition of resources through adaptation of leaf and stem traits in a coordinated whole-plant fashion. To test this hypothesis, we ran a 4 year permafrost thaw and nutrient fertilization experiment with a fully factorial block design and six treatment combinations – permafrost thaw (control, unheated cable, heated cable) × fertilization (no nutrient addition, nutrient addition). We measured 10 leaf and stem traits related to growth, defence and the resource economics spectrum in four shrub species (Betula nana, Salix pulchra, Ledum palustre and Vaccinium vitis-idaea), which were sampled in the experimental plots. The plant trait data were statistically analysed using linear mixed-effect models and principal component analysis (PCA). The response to increased permafrost thaw was not significant for most shrub traits. However, all shrubs responded to the fertilization treatment, despite decreased thaw depth and soil temperature in fertilized plots. Shrubs tended to grow taller but did not increase their stem density or bark thickness. We found a similar coordinated trait response for all four species at leaf and plant level; i.e. they shifted from a conservative towards a more acquisitive resource economy strategy upon fertilization. In accordance, results point towards a lower investment into defence mechanisms, and hence increased shrub vulnerability to herbivory and climate extremes. Compared to biomass and height only, detailed data involving individual plant organ traits such as leaf area and nutrient contents or stem water content can contribute to a better mechanistic understanding of feedbacks between shrub growth strategies, permafrost thaw and carbon and energy fluxes. In combination with observational data, these experimental tundra trait data allow for a more realistic representation of tundra shrubs in dynamic vegetation models and robust prediction of ecosystem functions and related climate–vegetation–permafrost feedbacks.


2019 ◽  
Author(s):  
Christian Damgaard

AbstractAcross four grassland habitat types, the cover of thin-leaved plants was found to decrease significantly, but generally only limited trait selection was observed on leaf traits (SLA and LDMC) in a study of an extensive Danish grassland vegetation dataset from an eight-year period. The mostly negative result of this study may partly be due to the relatively conservative analysis, where the continuous plant trait variables are used for grouping plant species into functional types, which are then treated as dependent variables. This procedure is in contrast to most other analyses of trait selection, where it is the community weighted mean of the traits that is used as the dependent variable. However, it is not the traits, but rather individual plants that are sampled and, consequently, it is important to consider the sampling of species abundance in the statistical modelling of plant traits. This misapprehension has not received sufficient proper attention in the plant trait literature.


2021 ◽  
Vol 18 (8) ◽  
pp. 2449-2463
Author(s):  
Genevieve L. Noyce ◽  
J. Patrick Megonigal

Abstract. Climate warming perturbs ecosystem carbon (C) cycling, causing both positive and negative feedbacks on greenhouse gas emissions. In 2016, we began a tidal marsh field experiment in two vegetation communities to investigate the mechanisms by which whole-ecosystem warming alters C gain, via plant-driven sequestration in soils, and C loss, primarily via methane (CH4) emissions. Here, we report the results from the first 4 years. As expected, warming of 5.1 ∘C more than doubled CH4 emissions in both plant communities. We propose this was caused by a combination of four mechanisms: (i) a decrease in the proportion of CH4 consumed by CH4 oxidation, (ii) more C substrates available for methanogenesis, (iii) reduced competition between methanogens and sulfate-reducing bacteria, and (iv) indirect effects of plant traits. Plots dominated by Spartina patens consistently emitted more CH4 than plots dominated by Schoenoplectus americanus, indicating key differences in the roles these common wetland plants play in affecting anaerobic soil biogeochemistry and suggesting that plant composition can modulate coastal wetland responses to climate change.


2021 ◽  
Vol 118 (5) ◽  
pp. e2022653118 ◽  
Author(s):  
Nils Rädecker ◽  
Claudia Pogoreutz ◽  
Hagen M. Gegner ◽  
Anny Cárdenas ◽  
Florian Roth ◽  
...  

Recurrent mass bleaching events are pushing coral reefs worldwide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral–algal symbiosis have been extensively characterized, our understanding of the underlying causes remains incomplete. Here, we investigated the nutrient fluxes and the physiological as well as molecular responses of the widespread coral Stylophora pistillata to heat stress prior to the onset of bleaching to identify processes involved in the breakdown of the coral–algal symbiosis. We show that altered nutrient cycling during heat stress is a primary driver of the functional breakdown of the symbiosis. Heat stress increased the metabolic energy demand of the coral host, which was compensated by the catabolic degradation of amino acids. The resulting shift from net uptake to release of ammonium by the coral holobiont subsequently promoted the growth of algal symbionts and retention of photosynthates. Together, these processes form a feedback loop that will gradually lead to the decoupling of carbon translocation from the symbiont to the host. Energy limitation and altered symbiotic nutrient cycling are thus key factors in the early heat stress response, directly contributing to the breakdown of the coral–algal symbiosis. Interpreting the stability of the coral holobiont in light of its metabolic interactions provides a missing link in our understanding of the environmental drivers of bleaching and may ultimately help uncover fundamental processes underpinning the functioning of endosymbioses in general.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesco Caponi ◽  
David F. Vetsch ◽  
Annunziato Siviglia

Abstract Both above- and below-ground plant traits are known to modulate feedbacks between vegetation and river morphodynamic processes. However, how they collectively influence vegetation establishment on gravel bars remains less clear. Here we develop a numerical model that couples above- and below-ground vegetation dynamics with hydromorphological processes. The model dynamically links plant growth rate to water table fluctuations and includes plant mortality by uprooting and burial. We considered a realistic hydrological regime and used the model to simulate the coevolution of alternate gravel bars and vegetation that displays trade-offs in investment of above- and below-ground biomass. We found that a balanced plant growth above- and below-ground facilitates vegetation to establish on steady, stable bars, because it allows plants to develop traits that maximise growth performance during low flow periods and thus survival during floods. Regardless of the growth strategy, vegetation could not establish on migrating bars because of large plant loss by uprooting during floods. These findings add on previous studies suggesting that morphodynamic processes play a key role on determining plant trait distributions and highlight the importance of including the dynamics of both above- and below-ground plant traits for predicting shifts between bare and vegetated states in river bars.


Sign in / Sign up

Export Citation Format

Share Document