scholarly journals Computational scanning tunneling microscope image database

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kamal Choudhary ◽  
Kevin F. Garrity ◽  
Charles Camp ◽  
Sergei V. Kalinin ◽  
Rama Vasudevan ◽  
...  

AbstractWe introduce the systematic database of scanning tunneling microscope (STM) images obtained using density functional theory (DFT) for two-dimensional (2D) materials, calculated using the Tersoff-Hamann method. It currently contains data for 716 exfoliable 2D materials. Examples of the five possible Bravais lattice types for 2D materials and their Fourier-transforms are discussed. All the computational STM images generated in this work are made available on the JARVIS-STM website (https://jarvis.nist.gov/jarvisstm). We find excellent qualitative agreement between the computational and experimental STM images for selected materials. As a first example application of this database, we train a convolution neural network model to identify the Bravais lattice from the STM images. We believe the model can aid high-throughput experimental data analysis. These computational STM images can directly aid the identification of phases, analyzing defects and lattice-distortions in experimental STM images, as well as be incorporated in the autonomous experiment workflows.

2009 ◽  
Vol 1177 ◽  
Author(s):  
Danny Eric Paul Vanpoucke ◽  
Geert Brocks

AbstractNanowire (NW) arrays form spontaneously after high temperature annealing of a sub monolayer deposition of Pt on a Ge(001) surface. These NWs are a single atom wide, with a length limited only by the underlying beta-terrace to which they are uniquely connected. Using ab-initio density functional theory (DFT) calculations we study possible geometries of the NWs and substrate. Direct comparison to experiment is made via calculated scanning tunneling microscope (STM) images. Based on these images, geometries for the beta-terrace and the NWs are identified, and a formation path for the nanowires as function of increasing local Pt density is presented. We show the beta-terrace to be a dimer row surface reconstruction with a checkerboard pattern of Ge-Ge and Pt-Ge dimers. Most remarkably, comparison of calculated to experimental STM images shows the NWs to consist of germanium atoms embedded in the Pt-lined troughs of the underlying surface, contrary to what was assumed previously in experiments.


Author(s):  
Kenta Kuroishi ◽  
Muhammad Rifqi Al Fauzan ◽  
Ngoc Thanh Pham ◽  
Yuelin Wang ◽  
Yuji Hamamoto ◽  
...  

The reaction of nitric oxide (NO) on Cu(100) is studied by scanning tunneling microscope, electron energy loss spectroscopy and density functional theory calculations. The NO molecules adsorb mainly as monomers...


2019 ◽  
Vol 10 (43) ◽  
pp. 9998-10002 ◽  
Author(s):  
Tianren Fu ◽  
Shanelle Smith ◽  
María Camarasa-Gómez ◽  
Xiaofang Yu ◽  
Jiayi Xue ◽  
...  

We demonstrate that imidazole based π–π stacked dimers form strong and efficient conductance pathways in single-molecule junctions using the scanning-tunneling microscope-break junction (STM-BJ) technique and density functional theory-based calculations.


1992 ◽  
Vol 286 ◽  
Author(s):  
Teresa D. Golden ◽  
Ryne P. Raffaelle ◽  
Richard J. Phillips ◽  
Jay A. Switzer

ABSTRACTWe have imaged fractured cross-sections of electrodeposited ceramic oxides based on the TI-Pb-O system using a scanning tunneling microscope. The goal of this work is to measure both the modulation wavelength and compositional profile of the superlattices by mapping out the electronic properties in real space on a nanometer scale. Fourier analysis was done on STM images of all superlattices to yield the modulation wavelength. The modulation wavelength from STM was then compared with those obtained, by Faraday calculation and x-ray diffraction. The STM can be used to design “better” superlattices. We have found that the composition profile in superlattices deposited by modulating the potential was more square than in superlattices deposited by modulating the current.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Taylor T. Bilyeu ◽  
Jack C. Straton ◽  
Axel Mainzer Koenig ◽  
Peter Moeck

ABSTRACTA statistically sound procedure for the unambiguous identification of the underlying Bravais lattice of an image of a 2D periodic array of objects is described. Our Bravais lattice detection procedure is independent of which type of microscope has been utilized for the recording of the image data. It is particularly useful for the correction of Scanning Tunneling Microscope (STM) images that suffer from a blunt scanning probe tip artifact, i.e. simultaneously recording multiple mini-tips. The unambiguous detection of the type of translation symmetry presents a first step towards making objective decisions about which plane symmetry a 2D periodic image is best modeled by. Such decisions are important for the application of Crystallographic Image Processing (CIP) techniques to images from Scanning Probe Microscopes (SPMs).


2004 ◽  
Vol 11 (02) ◽  
pp. 185-190 ◽  
Author(s):  
A. BILIĆ ◽  
J. R. REIMERS ◽  
N. S. HUSH

We have modeled the dissociative chemisorption of water on the Si (100)-(2×1) surface using a generalized gradient approximation of density functional theory and a periodic slab model of the surface. For the energetically favorable structures, scanning tunneling microscope topographs of the filled states are simulated. These exhibit distinctively dark characteristics where water "islands" are formed, in agreement with experimental findings. In addition, they indicate that the hydrogen-atom and hydroxyl-radical adducts display somewhat different contrasts. Furthermore, in the case of a partial saturation of a Si dimer a prominent brightness is predicted for the unsaturated Si atoms if their dimer-forming counterparts are saturated by hydroxyl species, while in the case of hydrogen saturation the contrast is rather dim.


2012 ◽  
Vol 60 (1) ◽  
pp. 87-91
Author(s):  
MS Alam ◽  
FA Chowdhury ◽  
RW Saalfrank ◽  
AV Postnikov ◽  
P Müller

In order to achieve a better understanding of how scanning tunneling microscopy (STM) images of metallo-complexes are related to the geometric and electronic structure, we performed scanning microscopy (STM) and scanning tunneling spectroscopy (STS) techniques on [FeIIIFeIII 3L6] (L= N-methylaminediethanolate) star-type tetranuclear molecular magnet. The experiments were performed under ambient condition. We were able to image single molecule by STM with submolecular resolution. In our STS measurements we found a rather large signal at the positions of iron ion centers in the molecules. This direct addressing of metal centers was further confirmed by density functional theory (DFT) calculations.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10343  Dhaka Univ. J. Sci. 60(1): 87-91 2012 (January)


2021 ◽  
Vol 252 ◽  
pp. 02020
Author(s):  
Li Luo ◽  
Wang Jingliang ◽  
Liu Fang ◽  
Yang Song ◽  
Duan Qizhi

Scanning tunneling microscope (STM) is one of the most important instruments in the field of two-dimensional(2D) materials science while the STM tip is one of the most important parts in STM. Thus, we exhibit a new automated preparation process by electrochemical corrosion of STM tungsten(W) tips based on analog circuit technology in this paper. And the new preparation process is easy and reliable and can save time of researchers. Here, we will elaborate the preparation process and how the system works. In all, we will open up a new road in the field of preparation of STM tips.


Sign in / Sign up

Export Citation Format

Share Document