Advances in Crystallographic Image Processing for Scanning Probe Microscopy: Unambiguous identification of the translation symmetry of a 2D periodic image

2014 ◽  
Vol 1712 ◽  
Author(s):  
Taylor T. Bilyeu ◽  
Jack C. Straton ◽  
Axel Mainzer Koenig ◽  
Peter Moeck

ABSTRACTA statistically sound procedure for the unambiguous identification of the underlying Bravais lattice of an image of a 2D periodic array of objects is described. Our Bravais lattice detection procedure is independent of which type of microscope has been utilized for the recording of the image data. It is particularly useful for the correction of Scanning Tunneling Microscope (STM) images that suffer from a blunt scanning probe tip artifact, i.e. simultaneously recording multiple mini-tips. The unambiguous detection of the type of translation symmetry presents a first step towards making objective decisions about which plane symmetry a 2D periodic image is best modeled by. Such decisions are important for the application of Crystallographic Image Processing (CIP) techniques to images from Scanning Probe Microscopes (SPMs).

2014 ◽  
Vol 70 (a1) ◽  
pp. C1607-C1607
Author(s):  
Peter Moeck ◽  
Taylor Bilyeu ◽  
Axel Mainzer Koenig ◽  
Jack Straton

Crystallographic image processing (CIP) is well established in the electron microscopy community, where it is used for the analysis and enhancement of high-resolution transmission electron microscope images of crystals and two-dimensional (2D) arrays of membrane proteins. The technique has recently been adapted to the processing of 2D periodic images from scanning probe microscopes (SPMs) [1]. Within this context, a procedure for the unambiguous identification of the underlying Bravais lattice of an experimental or theoretical image of a 2D periodic array of objects (e.g. molecules or atoms and their respective electron density distribution functions, ...) has been developed [2]. This procedure constitutes a partial solution to a longstanding but unresolved issue in CIP. The unresolved issue itself is the complete quantification of the deviations of 2D periodic images from the plane symmetry groups. A complete solution to this problem will allow for unambiguous decisions as to which plane symmetry best models experimental data when all systematic errors in the acquiring and processing of the image data have been accounted for at a level that systematic rest errors are negligible. Our 2D Bravais lattice identification procedure is independent of which type of microscope has been utilized for the recording of the images. It is based on classification procedures for non-disjoint models from the robotics community and is particularly useful for the correction of scanning tunneling microscope (STM) images that suffer from a blunt scanning probe tip artifact [2]. With the crystallographic processing of two molecular resolution STM images of periodic arrays of tetraphenoxyphthalocyanine on graphite, it is demonstrated how the classical CIP plane symmetry estimation procedures are augmented by our unambiguous translation symmetry identification method. We also apply CIP to an artificial SPM image that features a blunt scanning probe tip artifact, see the figure below.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kamal Choudhary ◽  
Kevin F. Garrity ◽  
Charles Camp ◽  
Sergei V. Kalinin ◽  
Rama Vasudevan ◽  
...  

AbstractWe introduce the systematic database of scanning tunneling microscope (STM) images obtained using density functional theory (DFT) for two-dimensional (2D) materials, calculated using the Tersoff-Hamann method. It currently contains data for 716 exfoliable 2D materials. Examples of the five possible Bravais lattice types for 2D materials and their Fourier-transforms are discussed. All the computational STM images generated in this work are made available on the JARVIS-STM website (https://jarvis.nist.gov/jarvisstm). We find excellent qualitative agreement between the computational and experimental STM images for selected materials. As a first example application of this database, we train a convolution neural network model to identify the Bravais lattice from the STM images. We believe the model can aid high-throughput experimental data analysis. These computational STM images can directly aid the identification of phases, analyzing defects and lattice-distortions in experimental STM images, as well as be incorporated in the autonomous experiment workflows.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


2001 ◽  
Vol 7 (S2) ◽  
pp. 130-131
Author(s):  
Buddy D. Ratner ◽  
Reto Luginbühll ◽  
Rene Overney ◽  
Michael Garrison ◽  
Thomas Boland

Although scanning probe microscopy (SPM) can generate images of surface topography, this class of techniques is exceptionally valuable in its ability to provide quantitative and chemically specific information about biomaterial surfaces with high spatial definition. Since engineered biomaterials are designed to deliver chemically defined information, often arrayed in specific geometries, tools that can characterize such materials are needed.A few years ago, we demonstrated how the atomic force microscope (AFM) could precisely distinguish between each of the four nucleotide bases that comprise DNA, measure the nucleotide-nucleotide force of interaction and spatially localize that information on a surface (1). in particular, we found that the nucleotide bases could self-assemble on gold. The assembly process was imaged using scanning tunneling microscopy (STM) and this led to an understanding of the structure of the assembled film. The assembled film structure was further characterized using electron spectroscopy for chemical analysis (ESCA) and secondary ion mass spectrometry (SIMS).


1992 ◽  
Vol 286 ◽  
Author(s):  
Teresa D. Golden ◽  
Ryne P. Raffaelle ◽  
Richard J. Phillips ◽  
Jay A. Switzer

ABSTRACTWe have imaged fractured cross-sections of electrodeposited ceramic oxides based on the TI-Pb-O system using a scanning tunneling microscope. The goal of this work is to measure both the modulation wavelength and compositional profile of the superlattices by mapping out the electronic properties in real space on a nanometer scale. Fourier analysis was done on STM images of all superlattices to yield the modulation wavelength. The modulation wavelength from STM was then compared with those obtained, by Faraday calculation and x-ray diffraction. The STM can be used to design “better” superlattices. We have found that the composition profile in superlattices deposited by modulating the potential was more square than in superlattices deposited by modulating the current.


Sign in / Sign up

Export Citation Format

Share Document