scholarly journals Conductive Atomic Force Microscope Study of Bipolar and Threshold Resistive Switching in 2D Hexagonal Boron Nitride Films

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
A. Ranjan ◽  
N. Raghavan ◽  
S. J. O’Shea ◽  
S. Mei ◽  
M. Bosman ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Shiyu Deng ◽  
Yanyun Gu ◽  
Xi Wan ◽  
Mingliang Gao ◽  
Shijia Xu ◽  
...  

Ultrathin hexagonal boron nitride (h-BN) has recently attracted a lot of attention due to its excellent properties. With the rapid development of chemical vapor deposition (CVD) technology to synthesize wafer-scale single-crystal h-BN, the properties of h-BN have been widely investigated with a variety of material characterization techniques. However, the electronic properties of monolayer h-BN have rarely been quantitatively determined due to its atomically thin thickness and high sensitivity to the surrounding environment. In this work, by the combined use of AFM (atomic force microscope) PeakForce Tunneling (PF-TUNA) mode and Kevin probe force microscopy (KPFM) model, both the electrical resistivity (529 MΩ cm) and the inherent Fermi level (∼4.95 eV) of the as-grown monolayer h-BN flakes on the copper substrate have been quantitatively analyzed. Moreover, direct visualization of the high-temperature oxidation-resistance effect of h-BN nanoflakes has been presented. Our work demonstrates a direct estimation of the electronic properties for 2D materials on the initial growth substrate without transfer, avoiding any unwanted contaminations introduced during the transfer process. The quantitative analysis by state-of-the-art atomic force microscope techniques implies that monolayer h-BN can be employed as an atomically thin and high-quality insulator for 2D electronics, as well as a high-temperature antioxidation layer for electronic device applications.


1993 ◽  
Vol 71 (20) ◽  
pp. 3303-3306 ◽  
Author(s):  
Y. Gong ◽  
Q. Xue ◽  
Z. Dai ◽  
C. G. Slough ◽  
R. V. Coleman ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yifei Li ◽  
Xin Wen ◽  
Changjie Tan ◽  
Ning Li ◽  
Ruijie Li ◽  
...  

Owing to its irreplaceable roles in new functional devices, such as universal substrates and excellent layered insulators, high-quality hexagonal BN (hBN) crystals are exceedingly required in the field of two-dimensional...


2005 ◽  
Vol 202 (1) ◽  
pp. 3-3 ◽  
Author(s):  
Wei Chen ◽  
Kian Ping Loh ◽  
Ming Lin ◽  
Rong Liu ◽  
Andrew T. S. Wee

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yong-Jin Cho ◽  
Alex Summerfield ◽  
Andrew Davies ◽  
Tin S. Cheng ◽  
Emily F. Smith ◽  
...  

Abstract We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.


Sign in / Sign up

Export Citation Format

Share Document