scholarly journals Improved therapeutic potential of tapentadol employing cationic exchange resins as carriers in neuropathic pain: evidence from pharmacokinetic and pharmacodynamics study

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Manu Sharma ◽  
Ranju Soni
2020 ◽  
Vol 21 (3) ◽  
pp. 288-301 ◽  
Author(s):  
Lin Zhou ◽  
Luyao Ao ◽  
Yunyi Yan ◽  
Wanting Li ◽  
Anqi Ye ◽  
...  

Background: Some of the current challenges and complications of cancer therapy are chemotherapy- induced peripheral neuropathy (CIPN) and the neuropathic pain that are associated with this condition. Many major chemotherapeutic agents can cause neurotoxicity, significantly modulate the immune system and are always accompanied by various adverse effects. Recent evidence suggests that cross-talk occurs between the nervous system and the immune system during treatment with chemotherapeutic agents; thus, an emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN, as demonstrated by the upregulation of chemokines. Chemokines were originally identified as regulators of peripheral immune cell trafficking, and chemokines are also expressed on neurons and glial cells in the central nervous system. Objective: In this review, we collected evidence demonstrating that chemokines are potential mediators and contributors to pain signalling in CIPN. The expression of chemokines and their receptors, such as CX3CL1/CX3CR1, CCL2/CCR2, CXCL1/CXCR2, CXCL12/CXCR4 and CCL3/CCR5, is altered in the pathological conditions of CIPN, and chemokine receptor antagonists attenuate neuropathic pain behaviour. Conclusion: By understanding the mechanisms of chemokine-mediated communication, we may reveal chemokine targets that can be used as novel therapeutic strategies for the treatment of CIPN.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 434
Author(s):  
Tomohiro Yamashita ◽  
Sawako Kamikaseda ◽  
Aya Tanaka ◽  
Hidetoshi Tozaki-Saitoh ◽  
Jose M. M. Caaveiro ◽  
...  

P2X7 receptors (P2X7Rs) belong to a family of ATP-gated non-selective cation channels. Microglia represent a major cell type expressing P2X7Rs. The activation of microglial P2X7Rs causes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β). This response has been implicated in neuroinflammatory states in the central nervous system and in various diseases, including neuropathic pain. Thus, P2X7R may represent a potential therapeutic target. In the present study, we screened a chemical library of clinically approved drugs (1979 compounds) by high-throughput screening and showed that the Ca2+ channel blocker cilnidipine has an inhibitory effect on rodent and human P2X7R. In primary cultured rat microglial cells, cilnidipine inhibited P2X7R-mediated Ca2+ responses and IL-1β release. Moreover, in a rat model of neuropathic pain, the intrathecal administration of cilnidipine produced a reversal of nerve injury-induced mechanical hypersensitivity, a cardinal symptom of neuropathic pain. These results point to a new inhibitory effect of cilnidipine on microglial P2X7R-mediated inflammatory responses and neuropathic pain, proposing its therapeutic potential.


2015 ◽  
Vol 71 (10) ◽  
pp. 1478-1484
Author(s):  
Zhiping Zhu ◽  
Chenlin Dai ◽  
Sen Liu ◽  
Ye Tian

The sulphate content of a system increases when strong-acid cationic exchange resins leak into a system or when sulphonic acid groups on the resin organic chain detach. To solve this problem, a dynamic cycle method was used in dissolution experiments of several resins under H2O2 or residual chlorine conditions. Results show that after performing dynamic cycle experiments for 120 hours under oxidizing environments, the SO42− and total organic carbon (TOC) released by four kinds of resins increased with time, contrary to their release velocity. The quantity of released SO42− increased as the oxidizing ability of oxidants was enhanced. Results showed that the quantity and velocity of released SO42− under residual chlorine condition were larger than those under H2O2 condition. Data analysis of SO42− and TOC released from the four kinds of resins by the dynamic cycle experiment revealed that the strength of oxidation resistance of the four resins were as follows: 650C > 1500H > S200 > SP112H.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2072 ◽  
Author(s):  
Mustafa Barbaros ◽  
Özgür Can ◽  
Umut Üçel ◽  
Nazlı Turan Yücel ◽  
Ümide Demir Özkay

Atomoxetine is a selective noradrenaline reuptake inhibitor drug. Based on the knowledge that agents increasing monoamine levels in the central nervous system have therapeutic potential for neuropathic pain, it is planned to investigate the possible efficacy of atomoxetine on diabetes-induced hyperalgesia, in this study. Randall-Selitto (mechanical noxious stimuli) and Hargreaves (thermal noxious stimuli) tests were used to evaluate nociceptive perception of rats. Obtained data indicated that streptozotocin-induced diabetes causes significant decreases in the paw withdrawal threshold and paw withdrawal latency values of the animals, respectively. However, atomoxetine administered at 3 mg/kg/day for 7 and 14 days improved these diabetes-induced hyperalgesia responses. Furthermore, antihyperalgesic activity was antagonized with α-methyl-para-tyrosine methyl ester, phentolamine, propranolol, and sulpiride pre-treatments. The same effect was not reversed, however, by SCH 23390. These findings demonstrated, for the first time, that atomoxetine possesses significant antihyperalgesic activity on diabetes-induced neuropathic pain and this effect seems to be mediated by α- and β-adrenergic and D2/D3 dopaminergic receptors. Results of this present study seem to offer a new indication for an old drug; atomoxetine, but these preclinical data should first be confirmed with further well-designed clinical trials.


2010 ◽  
Vol 19 (4) ◽  
pp. 455-468 ◽  
Author(s):  
Rishabh Dev ◽  
Punit Kumar Srivastava ◽  
Jitesh P Iyer ◽  
Sunanda G Dastidar ◽  
Abhijit Ray

Pharmacology ◽  
2019 ◽  
Vol 105 (3-4) ◽  
pp. 173-180 ◽  
Author(s):  
Yeo Ok Kim ◽  
Ji A Song ◽  
Woong Mo Kim ◽  
Myung Ha Yoon

Background: Chemotherapy-induced neuropathic pain (CINP) is a serious side effect of chemotherapy. Korean Red Ginseng (KRG) is a popular herbal medicine in Asian countries. We examined the therapeutic potential of intrathecally administered KRG for CINP and clarified the mechanisms of action with regard to 5-hydroxytryptamine (5-HT)7 receptor at the spinal level. Methods: CINP was evoked by intraperitoneal injection of cisplatin in male Sprague-Dawley rats. After examining the effects of intrathecally administered KRG on CINP, 5-HT receptor antagonist (dihydroergocristine [DHE]) was pretreated to determine the involvement of 5-HT receptor. In addition, intrathecal 5-HT7 receptor antagonist (SB269970) was administered to define the role of 5-HT7 receptor on the effect of KRG. 5-HT7 receptor mRNA expression levels and 5-HT concentrations were examined in the spinal cord. Results: Intrathecally administered KRG produced a limited, but a dose-dependent, antiallodynic effect. Intrathecally administered DHE antagonized the antiallodynia caused by KRG. Furthermore, intrathecal SB269970 also reversed the effect of KRG. No changes in 5-HT7 receptor mRNA expression were seen in the dorsal horn of the spinal cord after cisplatin injection. After injecting cisplatin, 5-HT levels were decreased in the spinal cord, whereas those of 5-HT were increased by intrathecal KRG. Conclusions: Intrathecally administered KRG decreased CINP. In addition, spinal 5-HT7 receptors contributed to the antiallodynic effect of KRG.


Sign in / Sign up

Export Citation Format

Share Document