scholarly journals Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mahnaz Ramezanpour ◽  
Harrison Bolt ◽  
Alkis James Psaltis ◽  
Peter-John Wormald ◽  
Sarah Vreugde
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mingrong Nie ◽  
Qingxiang Zeng ◽  
Luo Xi ◽  
Yiquan Tang ◽  
Renzhong Luo ◽  
...  

Background. Airway epithelium plays an important role during the development of allergic rhinitis (AR), which is characterized by production of thymic stromal lymphopoietin (TSLP), interleukin 33 (IL-33), and interleukin 25 (IL-25). IL-35, mainly expressed by Treg cells, have negative regulation in Th2, Th17, and ILC2 inflammation. However, the effect of IL-35 on human nasal epithelial cells (HNECs) especially the secretion of nasal epithelial-derived proinflammatory cytokines as well as the possible mechanism is still unclear. Methods. HNECs were cultured and stimulated by various stimulators. The expression of IL-33, IL-25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3 from supernatant was measured using real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). AR mice were developed to verify the effect of IL-35 on nasal epithelial cells in vivo. Results. After Poly I:C stimulation, IL-35 inhibited the production of IL-25, and TSLP from HNECs increased significantly compared with baseline levels ( P < 0.05 ). After Dermatophagoides pteronyssinus or Aspergillus fumigatus stimulation, IL-35 inhibited the production of IL-25, IL-33, and TSLP from HNECs increased significantly compared with baseline levels ( P < 0.05 ). After Dermatophagoides pteronyssinus, IL-35 inhibited the production of eotaxin-1, eotaxin-2, and eotaxin-3 released from HNECs increased significantly compared with baseline levels ( P < 0.05 ). Similarly, IL-35-treated AR mice presented with decreased expression of IL-33, IL-25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3 in nasal lavage fluid. Conclusion. IL-35 suppressed both type 2 inflammation-inducing cytokines and eosinophil chemotactic factor from HNECs, suggesting the important role of IL-35 during the development of AR.


Author(s):  
Akira Nakazono ◽  
Yuji Nakamaru ◽  
Mahnaz Ramezanpour ◽  
Takeshi Kondo ◽  
Masashi Watanabe ◽  
...  

BackgroundFrom the first detection in 2019, SARS-CoV-2 infections have spread rapidly worldwide and have been proven to cause an urgent and important health problem. SARS-CoV-2 cell entry depends on two proteins present on the surface of host cells, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). The nasal cavity is thought to be one of the initial sites of infection and a possible reservoir for dissemination within and between individuals. However, it is not known how the expression of these genes is regulated in the nasal mucosa.ObjectiveIn this study, we examined whether the expression of ACE2 and TMPRSS2 is affected by innate immune signals in the nasal mucosa. We also investigated how fluticasone propionate (FP), a corticosteroid used as an intranasal steroid spray, affects the gene expression.MethodsPrimary human nasal epithelial cells (HNECs) were collected from the nasal mucosa and incubated with Toll-like receptor (TLR) agonists and/or fluticasone propionate (FP), followed by quantitative PCR, immunofluorescence, and immunoblot analyses.ResultsAmong the TLR agonists, the TLR3 agonist Poly(I:C) significantly increased ACE2 and TMPRSS2 mRNA expression in HNECs (ACE2 36.212±11.600-fold change, p&lt;0.0001; TMPRSS2 5.598±2.434-fold change, p=0.031). The ACE2 protein level was also increased with Poly(I:C) stimulation (2.884±0.505-fold change, p=0.003). The Poly(I:C)-induced ACE2 expression was suppressed by co-incubation with FP (0.405±0.312-fold change, p=0.044).ConclusionThe activation of innate immune signals via TLR3 promotes the expression of genes related to SARS-CoV2 cell entry in the nasal mucosa, although this expression is suppressed in the presence of FP. Further studies are required to evaluate whether FP suppresses SARS-CoV-2 viral cell entry.


2011 ◽  
Vol 250 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Tsuyoshi Ohkuni ◽  
Takashi Kojima ◽  
Noriko Ogasawara ◽  
Tomoyuki Masaki ◽  
Jun Fuchimoto ◽  
...  

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Alfredo Resano ◽  
Surjyadipta Bhattacharjee ◽  
Miguel Barajas ◽  
Khanh V. Do ◽  
Roberto Aguado-Jiménez ◽  
...  

To contribute to further understanding the cellular and molecular complexities of inflammatory-immune responses in allergic disorders, we have tested the pro-homeostatic elovanoids (ELV) in human nasal epithelial cells (HNEpC) in culture challenged by several allergens. ELV are novel bioactive lipid mediators synthesized from the omega-3 very-long-chain polyunsaturated fatty acids (VLC-PUFA,n-3). We ask if: (a) several critical signaling events that sustain the integrity of the human nasal epithelium and other organ barriers are perturbed by house dust mites (HDM) and other allergens, and (b) if ELV would participate in beneficially modulating these events. HDM is a prevalent indoor allergen that frequently causes allergic respiratory diseases, including allergic rhinitis and allergic asthma, in HDM-sensitized individuals. Our study used HNEpC as an in vitro model to study the effects of ELV in counteracting HDM sensitization resulting in inflammation, endoplasmic reticulum (ER) stress, autophagy, and senescence. HNEpC were challenged with the following allergy inducers: LPS, poly(I:C), or Dermatophagoides farinae plus Dermatophagoides pteronyssinus extract (HDM) (30 µg/mL), with either phosphate-buffered saline (PBS) (vehicle) or ELVN-34 (500 nM). Results show that ELVN-34 promotes cell viability and reduces cytotoxicity upon HDM sensitization of HNEpC. This lipid mediator remarkably reduces the abundance of pro-inflammatory cytokines and chemokines IL-1β, IL-8, VEGF, IL-6, CXCL1, CCL2, and cell adhesion molecule ICAM1 and restores the levels of the pleiotropic anti-inflammatory IL-10. ELVN-34 also lessens the expression of senescence gene programming as well as of gene transcription engaged in pro-inflammatory responses. Our data also uncovered that HDM triggered the expression of key genes that drive autophagy, unfolded protein response (UPR), and matrix metalloproteinases (MMP). ELVN-34 has been shown to counteract these effects effectively. Together, our data reveal a novel, pro-homeostatic, cell-protective lipid-signaling mechanism in HNEpC as potential therapeutic targets for allergies.


2012 ◽  
Vol 26 (6) ◽  
pp. 433-438 ◽  
Author(s):  
Jun Fuchimoto ◽  
Takashi Kojima ◽  
Naoyuki Kobayashi ◽  
Tsuyoshi Ohkuni ◽  
Noriko Ogasawara ◽  
...  

Background Thymic stromal lymphopoietin (TSLP) acts as a master switch for allergic inflammation and plays a key role in allergic diseases, including allergic rhinitis. Double-stranded RNA (dsRNA) recognized by Toll-like receptor 3 (TLR3) strongly activates TSLP release from human human nasal epithelial cells (HNECs). Hop (Humulus lupulus L.) extracts have been shown to have potent pharmacologic effects on inflammation. Methods To investigate whether a hop water extract (HWE) prevents TSLP release from HNECs, human telomeras reverse transcriptase (hTERT)-transfected HNECs, used as a model of normal HNECs, were pretreated with HWE before treatment with the TLR3 ligand Polyinosine-polycytidylic acid (poly[I:C]). Results In the hTERT-transfected HNECs, treatment with HWE significantly reduced poly(I:C)-induced production and release of TSLP in a dose-dependent manner, as well as dexamethasone. Treatment with the protein kinase C (PKC) inhibitor GF109203X and NF-κB inhibitor IMD-0354 also reduced poly(I:C)-induced TSLP release from hTERT-transfected HNECs. Treatment with HWE efficiently prevented up-regulation of PKC activity by 12-O-tetradecanoyl phorbol-13-acetate but not NF-κB activity induced by IL-1β in hTERT-transfected HNECs. Conclusion Our results clearly indicated that HWE inhibited dsRNA-induced production and release of TSLP via a PKC signal pathway in HNECs and it may have potent preventive effects against allergic rhinitis.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 282
Author(s):  
Finny S. Varghese ◽  
Esther van Woudenbergh ◽  
Gijs J. Overheul ◽  
Marc J. Eleveld ◽  
Lisa Kurver ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


Sign in / Sign up

Export Citation Format

Share Document