scholarly journals Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Al-Yaari ◽  
A. Ducharne ◽  
F. Cheruy ◽  
W. T. Crow ◽  
J.-P. Wigneron
2011 ◽  
Vol 12 (5) ◽  
pp. 1086-1099 ◽  
Author(s):  
Rui Mei ◽  
Guiling Wang

Abstract This study examines the impact of sea surface temperature (SST) and soil moisture on summer precipitation over two regions of the United States (the upper Mississippi River basin and the Great Plains) based on data from observation and observation-forced model simulations (in the case of soil moisture). Results from SST–precipitation correlation analysis show that spatially averaged SST of identified oceanic areas are better predictors than derived SST patterns from the EOF analysis and that both predictors are strongly associated with the Pacific Ocean. Results from conditioned soil moisture–precipitation correlation analysis show that the impact of soil moisture on precipitation differs between the outer-quartiles years (with summer precipitation amount in the first and fourth quartiles) and inner-quartiles years (with summer precipitation amount in the second and third quartiles), and also between the high- and low-skill SST years (categorized according to the skill of SST-based precipitation prediction). Specifically, the soil moisture–precipitation feedback is more likely to be positive and significant in the outer-quartiles years and in the years when the skill of precipitation prediction based on SST alone is low. This study indicates that soil moisture should be included as a useful predictor in precipitation prediction, and the resulting improvement in prediction skills will be especially substantial during years of large precipitation anomalies. It also demonstrates the complexity of the impact of SST and soil moisture on precipitation, and underlines the important complementary roles both SST and soil moisture play in determining precipitation.


2012 ◽  
Vol 13 (3) ◽  
pp. 1010-1022 ◽  
Author(s):  
Rui Mei ◽  
Guiling Wang

Abstract This study examines the land–atmosphere coupling strength during summer over subregions of the United States based on observations [Climate Prediction Center (CPC)–Variable Infiltration Capacity (VIC)], reanalysis data [North American Regional Reanalysis (NARR) and NCEP Climate Forecast System Reanalysis (CFSR)], and models [Community Atmosphere Model, version 3 (CAM3)–Community Land Model, version 3 (CLM3) and CAM4–CLM4]. The probability density function of conditioned correlation between soil moisture and subsequent precipitation or surface temperature during the years of large precipitation anomalies is used as a measure for the coupling strength. There are three major findings: 1) among the eight subregions (classified by land cover types), the transition zone Great Plains (and, to a lesser extent, the Midwest and Southeast) are identified as hot spots for strong land–atmosphere coupling; 2) soil moisture–precipitation coupling is weaker than soil moisture–surface temperature coupling; and 3) the coupling strength is stronger in observational and reanalysis products than in the models examined, especially in CAM4–CLM4. The conditioned correlation analysis also indicates that the coupling strength in CAM4–CLM4 is weaker than in CAM3–CLM3, which is further supported by Global Land–Atmosphere Coupling Experiments1 (GLACE1)-type experiments and attributed to changes in CAM rather than modifications in CLM. Contrary to suggestions in previous studies, CAM–CLM models do not seem to overestimate the land–atmosphere coupling strength.


Author(s):  
Pang-Wei Liu ◽  
Rajat Bindlish ◽  
Bin Fang ◽  
Venkat Lakshmi ◽  
Peggy E. O'Neill ◽  
...  

2021 ◽  
Author(s):  
Brandi Gamelin ◽  
Jiali Wang ◽  
V. Rao Kotamarthi

<p>Flash droughts are the rapid intensification of drought conditions generally associated with increased temperatures and decreased precipitation on short time scales.  Consequently, flash droughts are responsible for reduced soil moisture which contributes to diminished agricultural yields and lower groundwater levels. Drought management, especially flash drought in the United States is vital to address the human and economic impact of crop loss, diminished water resources and increased wildfire risk. In previous research, climate change scenarios show increased growing season (i.e. frost-free days) and drying in soil moisture over most of the United States by 2100. Understanding projected flash drought is important to assess regional variability, frequency and intensity of flash droughts under future climate change scenarios. Data for this work was produced with the Weather Research and Forecasting (WRF) model. Initial and boundary conditions for the model were supplied by CCSM4, GFDL-ESM2G, and HadGEM2-ES and based on the 8.5 Representative Concentration Pathway (RCP8.5). The WRF model was downscaled to a 12 km spatial resolution for three climate time frames: 1995-2004 (Historical), 2045-2054 (Mid), and 2085-2094 (Late).  A key characteristic of flash drought is the rapid onset and intensification of dry conditions. For this, we identify onset with vapor pressure deficit during each time frame. Known flash drought cases during the Historical run are identified and compared to flash droughts in the Mid and Late 21<sup>st</sup> century.</p>


2021 ◽  
Author(s):  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Giuseppe Pollicino ◽  
Luigi Lodato

<p>The application of remote sensing for monitoring, detecting and analysing the spatial and extents and temporal changes of waste dumping sites and landfills could become a cost-effective and powerful solution. Multi-spectral satellite images, especially in the thermal infrared, can be exploited to characterize the state of activity of a landfill.  Indeed, waste disposal sites, during the period of activity, can show differences in surface temperature (LST, Land Surface Temperature), state of vegetation (estimated through NDVI, Normalized Difference Vegetation Index) or soil moisture (estimated through NDWI, Normalized Difference Water Index) compared to neighboring areas. Landfills with organic waste typically show higher temperatures than surrounding areas due to exothermic decomposition activities. In fact, the biogas, in the absence or in case of inefficiency of the conveying plants, rises through the layers of organic matter and earth (landfill body) until it reaches the surface at a temperature of over 40 ° C. Moreover, in some cases, leachate contamination of the aquifers can be identified by analyzing the soil moisture, through the estimate of the NDWI, and the state of suffering of the vegetation surrounding the site, through the estimate of the NDVI. This latter can also be an indicator of soil contamination due to the presence of toxic and potentially dangerous waste when buried or present nearby. To take into account these facts, we combine the LST, NDVI and NDWI indices of the dump site and surrounding areas in order to characterize waste disposal sites. Preliminary results show how this approach can bring out the area and level of activity of known landfill sites. This could prove particularly useful for the definition of intervention priorities in landfill remediation works.</p>


Sign in / Sign up

Export Citation Format

Share Document