scholarly journals Whole genome sequencing revealed new molecular characteristics in multidrug resistant staphylococci recovered from high frequency touched surfaces in London

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rory Cave ◽  
Raju Misra ◽  
Jiazhen Chen ◽  
Shiyong Wang ◽  
Hermine V. Mkrtchyan
2020 ◽  
Vol 8 (11) ◽  
pp. 1712
Author(s):  
Saskia-Camille Flament-Simon ◽  
María de Toro ◽  
Vanesa García ◽  
Jesús E. Blanco ◽  
Miguel Blanco ◽  
...  

Under a one health perspective and the worldwide antimicrobial resistance concern, we investigated extraintestinal pathogenic Escherichia coli (ExPEC), uropathogenic E. coli (UPEC), and multidrug resistant (MDR) E. coli from 197 isolates recovered from healthy dogs in Spain between 2013 and 2017. A total of 91 (46.2%) isolates were molecularly classified as ExPEC and/or UPEC, including 50 clones, among which (i) four clones were dominant (B2-CH14-180-ST127, B2-CH52-14-ST141, B2-CH103-9-ST372 and F-CH4-58-ST648) and (ii) 15 had been identified among isolates causing extraintestinal infections in Spanish and French humans in 2015 and 2016. A total of 28 (14.2%) isolates were classified as MDR, associated with B1, D, and E phylogroups, and included 24 clones, of which eight had also been identified among the human clinical isolates. We selected 23 ST372 strains, 21 from healthy dogs, and two from human clinical isolates for whole genome sequencing and built an SNP-tree with these 23 genomes and 174 genomes (128 from canine strains and 46 from human strains) obtained from public databases. These 197 genomes were segregated into six clusters. Cluster 1 comprised 74.6% of the strain genomes, mostly composed of canine strain genomes (p < 0.00001). Clusters 4 and 6 also included canine strain genomes, while clusters 2, 3, and 5 were significantly associated with human strain genomes. Finding several common clones and clone-related serotypes in dogs and humans suggests a potentially bidirectional clone transfer that argues for the one health perspective.


Author(s):  
Saskia-Camille Flament-Simon ◽  
María de Toro ◽  
Vanesa García ◽  
Jesús Eulogio Blanco ◽  
Miguel Blanco ◽  
...  

Under one-health perspective and the worldwide antimicrobial resistance concern, we investigate extraintestinal pathogenic Escherichia coli (ExPEC), uropathogenic E. coli (UPEC), and multidrug resistant (MDR) E. coli from 197 isolates recovered from healthy dogs in Spain between 2013 and 2017. Ninety-one (46.2%) isolates were classified as ExPEC and/or UPEC including 50 clones, among which (i) four clones were dominant (B2-CH14-180-ST127, B2-CH52-14-ST141, B2-CH103-9-ST372 and F-CH4-58-ST64815) and (ii) 15 had been shown to be displayed by previously published isolates causing extraintestinal infections in humans. Twenty-eight (14.2%) isolates were classified as MDR, associated with B1, D and E phylogroups and included 24 clones, of which eight had also been identified among human isolates causing infections. We selected 23 ST372 strains, 21 healthy dogs faecal isolates and two human clinical isolates for whole genome sequencing and built a SNP-tree with these 23 genomes and 174 genomes (128 from canine strains and 46 from human strains) obtained from public databases. The analysis of these 197 genomes allowed to identify six clusters. Cluster 1 comprised 74.6% of the strain genomes that were mostly composed of canine strain genomes (P &amp;lt; 0.00001). Clusters 4 and 6 also included canine strain genomes, while clusters 2, 3 and 5 were significantly associated with human strain genomes. All these findings suggest that dogs are reservoirs of ExPEC, UPEC and MDR E. coli isolates with zoonotic potential.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Xuebing Wang ◽  
Haijian Zhou ◽  
Dongke Chen ◽  
Pengcheng Du ◽  
Ruiting Lan ◽  
...  

ABSTRACT Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen that occurs primarily among immunocompromised and chronically ill patients. However, little is known about the genomic diversity of C. striatum, which contributes to its long-term persistence and transmission in hospitals. In this study, a total of 192 C. striatum isolates obtained from 14 September 2017 to 29 March 2018 in a hospital in Beijing, China, were analyzed by antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing was conducted on 91 isolates. Nearly all isolates (96.3%, 183/190) were MDR. The highest resistance rate was observed for ciprofloxacin (99.0%, 190/192), followed by cefotaxime (90.6%, 174/192) and erythromycin (89.1%, 171/192). PFGE separated the 192 isolates into 79 pulsotypes, and differences in core genome single-nucleotide polymorphisms (SNPs) partitioned the 91 isolates sequenced into four clades. Isolates of the same pulsotype were identical or nearly identical at the genome level, with some exceptions. Two dominant subclones, clade 3a, and clade 4a, were responsible for the hospital-wide dissemination. Genomic analysis further revealed nine resistance genes mobilized by eight unique cassettes. PFGE and whole-genome sequencing revealed that the C. striatum isolates studied were the result mainly of predominant clones spreading in the hospital. C. striatum isolates in the hospital progressively acquired resistance to antimicrobial agents, demonstrating that isolates of C. striatum may adapt rapidly through the acquisition and accumulation of resistance genes and thus evolve into dominant and persistent clones. These insights will be useful for the prevention of C. striatum infection in hospitals.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S309-S309 ◽  
Author(s):  
Mariana Castanheira ◽  
Jill Lindley ◽  
Holly Huynh ◽  
Rodrigo E Mendes ◽  
Olga Lomovskaya

Abstract Background CREs have been described worldwide and these isolates are often multidrug resistant with few therapeutic options remaining active against them. New β-lactam (BL)/β-lactamase inhibitor (BLI) combinations recently approved are active against KPC and some OXA-48 producers, but not against isolates producing metallo-β-lactamases (MBLs). We evaluated the activity of QPX7728 (QPX), a novel BLI paired with various BLs against a collection of CRE isolates characterized for the presence of carbapenemases. Methods A total of 508 CRE clinical isolates were susceptibility (S) tested by reference broth microdilution methods against meropenem (MER), tebipenem (TEB), cefepime (FEP), ceftolozane (TOL), and ertapenem (ETP), and meropenem (MEM) combined with QPX at fixed 2, 4, and 8 mg/L. Agents were provided by Qpex Biopharma except for FEP, ETP, and MEM. Carbapenemases were detected using PCR/sequencing or whole-genome sequencing. Results All BLs had limited activity against CRE isolates (MIC50/90, ≥32/ >32 mg/L) and QPX lowered the MIC for all agents (figure). Against 157 isolates carrying serine-carbapenemase (SCarb) genes (153 KPC-producers), MEM or ETP plus QPX at fixed 4 or 8 mg/L displayed MIC50 at ≤ 0.03 mg/L and MIC90 ranging from 0.12 to 0.5 mg/L. QPX lowered the FEP or TOL MIC50 to ≤ 0.25 mg/L and MIC90 to 0.25, 0.5 or 1 mg/L depending on the BLI concentration. Over 98.0% of the 150 isolates harboring OXA-48-like genes were inhibited by FEP, TOL, ETP or MEM plus QPX at ≤2 mg/L. Similarly, MEM, FEP, TOL and ETP + QPX inhibited >98.0% of the 51 CREs that did not carry carbapenemases at ≤2 mg/L when using a higher BLI concentration. The activity of FEP (MIC50/90, 0.06/1 mg/L), ETP (MIC50/90, 0.03/4 mg/L), and MEM (MIC50/90, ≤ 0.015/2 mg/L) was mostly restored when 8 mg/L of QPX was combined with these agents and tested against 150 MBL-producing isolates. Conclusion QPX restored the activity of several BLs when tested against 508 CRE isolates that include 157 harboring SCarb, 150 OXA-48-like-producers, and 150 MBL-producing isolates. Further development of this BLI with inhibitory activity against all carbapenemase types seems warranted. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document