scholarly journals NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Martin-Hurtado ◽  
Raquel Martin-Morales ◽  
Natalia Robledinos-Antón ◽  
Ruth Blanco ◽  
Ines Palacios-Blanco ◽  
...  

Abstract The transcription factor NRF2 is a master regulator of cellular antioxidant and detoxification responses, but it also regulates other processes such as autophagy and pluripotency. In human embryonic stem cells (hESCs), NRF2 antagonizes neuroectoderm differentiation, which only occurs after NRF2 is repressed via a Primary Cilia-Autophagy-NRF2 (PAN) axis. However, the functional connections between NRF2 and primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae, remain poorly understood. For instance, nothing is known about whether NRF2 affects cilia, or whether cilia regulation of NRF2 extends beyond hESCs. Here, we show that NRF2 and primary cilia reciprocally regulate each other. First, we demonstrate that fibroblasts lacking primary cilia have higher NRF2 activity, which is rescued by autophagy-activating mTOR inhibitors, indicating that the PAN axis also operates in differentiated cells. Furthermore, NRF2 controls cilia formation and function. NRF2-null cells grow fewer and shorter cilia and display impaired Hedgehog signaling, a cilia-dependent pathway. These defects are not due to increased oxidative stress or ciliophagy, but rather to NRF2 promoting expression of multiple ciliogenic and Hedgehog pathway genes. Among these, we focused on GLI2 and GLI3, the transcription factors controlling Hh pathway output. Both their mRNA and protein levels are reduced in NRF2-null cells, consistent with their gene promoters containing consensus ARE sequences predicted to bind NRF2. Moreover, GLI2 and GLI3 fail to accumulate at the ciliary tip of NRF2-null cells upon Hh pathway activation. Given the importance of NRF2 and ciliary signaling in human disease, our data may have important biomedical implications.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Laura Bozal-Basterra ◽  
María Gonzalez-Santamarta ◽  
Veronica Muratore ◽  
Aitor Bermejo-Arteagabeitia ◽  
Carolina Da Fonseca ◽  
...  

Primary cilia are sensory organelles crucial for cell signaling during development and organ homeostasis. Cilia arise from centrosomes and their formation and function is governed by numerous factors. Through our studies on Townes-Brocks Syndrome (TBS), a rare disease linked to abnormal cilia formation in human fibroblasts, we uncovered the leucine-zipper protein LUZP1 as an interactor of truncated SALL1, a dominantly-acting protein causing the disease. Using TurboID proximity labeling and pulldowns, we show that LUZP1 associates with factors linked to centrosome and actin filaments. Here, we show that LUZP1 is a cilia regulator. It localizes around the centrioles and to actin cytoskeleton. Loss of LUZP1 reduces F-actin levels, facilitates ciliogenesis and alters Sonic Hedgehog signaling, pointing to a key role in cytoskeleton-cilia interdependency. Truncated SALL1 increases the ubiquitin proteasome-mediated degradation of LUZP1. Together with other factors, alterations in LUZP1 may be contributing to TBS etiology.


1991 ◽  
Vol 115 (6) ◽  
pp. 1675-1684 ◽  
Author(s):  
H Baribault ◽  
R G Oshima

We have tested the requirement of keratin intermediate filaments for the formation and function of a simple epithelium. We disrupted both alleles of the mouse keratin 8 (mK8) gene in embryonic stem cells, and subsequently analyzed the phenotype in developing embryoid bodies in suspension culture. After the inactivation of the mouse keratin 8 (mK8) gene by a targeted insertion, mK8 protein synthesis was undetectable. In the absence of mK8 its complementary partners mK18 and mK19 were unable to form filaments within differentiated cells. Surprisingly, these ES cells differentiate to both simple and cystic embryoid bodies with apparently normal epithelia. Ultrastructural analysis shows an apparently normal epithelium with microvilli on the apical membrane, tight junctions and desmosomes on the lateral membrane, and an underlying basal membrane. No significant differences in the synthesis or secretion of alpha 1-fetoprotein and laminin were observed between the mK8- or wild-type embryoid bodies. Our data show that mK8 is not required for simple epithelium formation of extraembryonic endoderm.


2021 ◽  
Vol 22 (15) ◽  
pp. 8149
Author(s):  
Angel Cayo ◽  
Raúl Segovia ◽  
Whitney Venturini ◽  
Rodrigo Moore-Carrasco ◽  
Claudio Valenzuela ◽  
...  

Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Petra Pejskova ◽  
Madeline Louise Reilly ◽  
Lucia Bino ◽  
Ondrej Bernatik ◽  
Linda Dolanska ◽  
...  

Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.


2013 ◽  
Vol 200 (6) ◽  
pp. 709-720 ◽  
Author(s):  
Nathalie Jurisch-Yaksi ◽  
Applonia J. Rose ◽  
Huiqi Lu ◽  
Tim Raemaekers ◽  
Sebastian Munck ◽  
...  

Cilia project from the surface of most vertebrate cells and are important for several physiological and developmental processes. Ciliary defects are linked to a variety of human diseases, named ciliopathies, underscoring the importance of understanding signaling pathways involved in cilia formation and maintenance. In this paper, we identified Rer1p as the first endoplasmic reticulum/cis-Golgi–localized membrane protein involved in ciliogenesis. Rer1p, a protein quality control receptor, was highly expressed in zebrafish ciliated organs and regulated ciliary structure and function. Both in zebrafish and mammalian cells, loss of Rer1p resulted in the shortening of cilium and impairment of its motile or sensory function, which was reflected by hearing, vision, and left–right asymmetry defects as well as decreased Hedgehog signaling. We further demonstrate that Rer1p depletion reduced ciliary length and function by increasing γ-secretase complex assembly and activity and, consequently, enhancing Notch signaling as well as reducing Foxj1a expression.


2008 ◽  
Vol 180 (5) ◽  
pp. 897-904 ◽  
Author(s):  
Enko N. Kiprilov ◽  
Aashir Awan ◽  
Romain Desprat ◽  
Michelle Velho ◽  
Christian A. Clement ◽  
...  

Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery.


2017 ◽  
Vol 114 (6) ◽  
pp. E922-E930 ◽  
Author(s):  
Cheng Wang ◽  
Stephen P. Goff

Replication of the murine leukemia viruses is strongly suppressed in mouse embryonic stem (ES) cells. Proviral DNAs are formed normally but are then silenced by a large complex bound to DNA by the ES cell-specific zinc-finger protein ZFP809. We show here that ZFP809 expression is not regulated by transcription but rather by protein turnover: ZFP809 protein is stable in embryonic cells but highly unstable in differentiated cells. The protein is heavily modified by the accumulation of polyubiquitin chains in differentiated cells and stabilized by the proteasome inhibitor MG132. A short sequence of amino acids at the C terminus of ZFP809, including a single lysine residue (K391), is required for the rapid turnover of the protein. The silencing cofactor TRIM28 was found to promote the degradation of ZFP809 in differentiated cells. These findings suggest that the stem cell state is established not only by an unusual transcriptional profile but also by unusual regulation of protein levels through the proteasomal degradation pathway.


2020 ◽  
Author(s):  
Matthew C. Pahl ◽  
Claudia A. Doege ◽  
Kenyaita M. Hodge ◽  
Sheridan H. Littleton ◽  
Michelle E. Leonard ◽  
...  

SummaryThe hypothalamus regulates metabolic homeostasis by influencing behavior, energy utilization and endocrine systems. Given its role governing health-relevant traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function should yield insights into these traits and diseases. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generated a chromatin architecture atlas of an established embryonic stem cell (ESC)-derived hypothalamic-like neuron (HN) model across three stages of in vitro differentiation. We profiled accessible chromatin and identified physically interacting contacts between gene promoters and their putative cis-regulatory elements (cREs) to characterize changes in the gene regulatory landscape during hypothalamic differentiation. Next, we integrated these data with GWAS loci for multiple traits and diseases enriched for heritability in these cells, identifying candidate effector genes and cREs impacting transcription factor binding. Our results reveal common target genes for these traits, potentially identifying core hypothalamic developmental pathways. Our atlas will enable future efforts to determine precise mechanisms underlying hypothalamic development with respect to specific disease pathogenesis.


2020 ◽  
Vol 477 (18) ◽  
pp. 3541-3565
Author(s):  
Sarah E. Conduit ◽  
Bart Vanhaesebroeck

Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a ‘phosphoinositide map’ of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.


2018 ◽  
Author(s):  
Laura Vuolo ◽  
Nicola L. Stevenson ◽  
Kate J. Heesom ◽  
David J. Stephens

AbstractThe dynein-2 microtubule motor is the retrograde motor for intraflagellar transport. Mutations in dynein-2 components cause skeletal ciliopathies, notably Jeune syndrome. Dynein-2 comprises a heterodimer of two non-identical intermediate chains, WDR34 and WDR60. Here, we use knockout cell lines to demonstrate that each intermediate chain has a distinct role in cilia function. Both proteins are required to maintain a functional transition zone and for efficient bidirectional intraflagellar transport, only WDR34 is essential for axoneme extension. In contrast, only WDR60 is essential for co-assembly of the other subunits. Furthermore, WDR60 cannot compensate for loss of WDR34 or vice versa. This work defines a functional asymmetry to match the subunit asymmetry within the dynein-2 motor. Analysis of causative point mutations in WDR34 and WDR60 can partially restore function to knockout cells. Our data show that Jeune syndrome is caused by defects in transition zone architecture as well as intraflagellar transport.SUMMARYHere, Vuolo and colleagues use engineered knockout human cell lines to define roles for dynein-2 intermediate chains. WDR34 is required for axoneme extension, while WDR60 is not. Both subunits are required for cilia transition zone organization and bidirectional intraflagellar transport.


Sign in / Sign up

Export Citation Format

Share Document