scholarly journals Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zaida Zainal ◽  
Afiqah Abdul Rahim ◽  
Ammu Kutty Radhakrishnan ◽  
Sui Kiat Chang ◽  
Huzwah Khaza’ai

AbstractThe tocotrienol-rich fraction (TRF) from palm oil contains vitamin E, which possesses potent antioxidant and anti-inflammatory activities. Rheumatoid arthritis (RA) is a chronic joint inflammatory disease characterised by severe joint pain, cartilage destruction, and bone erosion owing to the effects of various pro-inflammatory mediators and cytokines. Here, we investigated the therapeutic effects of TRF in a rat model of collagen-induced arthritis (CIA). Arthritis was induced by a single intradermal injection of collagen type II in Dark Agouti (DA) rats. Rats were then treated with or without TRF by oral gavage from day 28 after the first collagen injection. Arthritic rats supplemented with TRF showed decreased articular index scores, ankle circumferences, paw volumes, and radiographic scores when compared with untreated rats. The untreated arthritic rats showed higher plasma C-reactive protein levels (p < 0.05) and production of pro-inflammatory cytokines than arthritic rats fed TRF. Moreover, there was a marked reduction in the severity of histopathological changes observed in arthritic rats treated with TRF compared with that in untreated arthritic rats. Overall, the results show that TRF had beneficial effects in this rat model of RA.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1294
Author(s):  
Samuel Álvarez-Almazán ◽  
Gabriel Navarrete-Vázquez ◽  
Itzia Irene Padilla-Martínez ◽  
José Correa-Basurto ◽  
Diana Alemán-González-Duhart ◽  
...  

By activating PPAR-γ, thiazolidinediones normalize glucose levels in animal models of type 2 diabetes and in patients with this pathology. The aim of the present study was to analyze 219 new derivatives in silico and select the best for synthesis, to be evaluated for acute oral toxicity in female rats and for control of diabetes-related parameters in a rat model of streptozotocin-induced diabetes. The best compound was chosen based on pharmacokinetic, pharmacodynamic, and toxicological parameters obtained in silico and binding orientation observed by docking simulations on PPAR-γ. Compound 1G was synthesized by a quick and easy Knoevenagel condensation. Acute oral toxicity was found at a dose greater than 2000 mg/Kg. Compound 1G apparently produces therapeutic effects similar to those of pioglitazone, decreasing glycaemia and triglyceride levels in diabetic animals, without liver damage. Moreover, it did not cause a significant weight gain and tended to reduce polydipsia and polyphagia, while diminishing systemic inflammation related to TNF-α and IL-6. It lowered the level of endogenous antioxidant molecules such as reduced glutathione and glutathione reductase. In conclusion, 1G may be a candidate for further testing as an euglycemic agent capable of preventing the complications of diabetes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zeng ◽  
Jinghua Wang ◽  
Zewei Zhuo ◽  
Yujun Luo ◽  
Weihong Sha ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


2021 ◽  
Author(s):  
Xiuying Li ◽  
Zhenhong Wei ◽  
Binxi Li ◽  
Jing Li ◽  
Huiying Lv ◽  
...  

Correction for ‘In vivo migration of Fe3O4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model’ by Xiuying Li et al., Biomater. Sci., 2019, 7, 2861–2872, DOI: 10.1039/C9BM00242A.


2018 ◽  
Vol 475 (22) ◽  
pp. 3629-3638 ◽  
Author(s):  
Yubao Liu ◽  
Rui Zou ◽  
Zhen Wang ◽  
Chuanyang Wen ◽  
Fan Zhang ◽  
...  

The present study was designed to explore whether exosomal lncRNA-KLF3-AS1 derived from human mesenchymal stem cells (hMSCs) can serve as a positive treatment for osteoarthritis (OA). hMSCs and MSC-derived exosomes (MSC-exo) were prepared for morphological observation and identification by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and collagenase-induced rat model of OA were established for the further experiments. Lentivirus-mediated siRNA targeting KLF3-AS1 was transfected into MSCs for silencing KLF3-AS1. The real-time quantitative PCR and western blotting analysis were performed to examine the mRNA and protein levels of type II collagen alpha 1 (Col2a1), aggrecan, matrix metalloproteinase 13 and runt-related transcription factor 2. Cell proliferation, apoptosis and migration were evaluated by CCK-8 assay, flow cytometry and transwell assay. HE (hematoxylin and eosin) staining and immunohistochemistry were used for histopathological studies. MSC-exo ameliorated IL-1β-induced cartilage injury. Furthermore, lncRNA KLF3-AS1 was markedly enriched in MSC-exo, and exosomal KLF3-AS1 suppressed IL-1β-induced apoptosis of chondrocytes. Further in vivo investigation indicated that exosomal KLF3-AS1 promoted cartilage repair in a rat model of OA. Exosomal KLF3-AS1 promoted cartilage repair and chondrocyte proliferation in a rat model of OA, which might be an underlying therapeutic target for OA.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhihua Sun ◽  
Peiyi Li ◽  
Xiao Wang ◽  
Shuchang Lai ◽  
Hong Qiu ◽  
...  

As the major cause of female anovulatory infertility, polycystic ovary syndrome (PCOS) affects a great proportion of women at childbearing age. Although glucagon-like peptide 1 receptor agonists (GLP-IRAs) show therapeutic effects for PCOS, its target and underlying mechanism remains elusive. In the present study, we identified that, both in vivo and in vitro, GLP-1 functioned as the regulator of proliferation and antiapoptosis of MGCs of follicle in PCOS mouse ovary. Furthermore, forkhead box protein O1 (FoxO1) plays an important role in the courses. Regarding the importance of granulosa cells (GCs) in oocyte development and function, the results from the current study could provide a more detailed illustration on the already known beneficial effects of GLP-1RAs on PCOS and support the future efforts to develop more efficient GLP-1RAs for PCOS treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2008 ◽  
Vol 134 (4) ◽  
pp. A-780-A-781
Author(s):  
Yara Haddad ◽  
Diane Vallerand ◽  
Antoine Brault ◽  
Jean Spenard ◽  
Pierre S. Haddad

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Rui-Ping Zhang ◽  
Ling-Jie Wang ◽  
Sheng He ◽  
Jun Xie ◽  
Jian-Ding Li

Despite advances in our understanding of spinal cord injury (SCI) mechanisms, there are still no effective treatment approaches to restore functionality. Although many studies have demonstrated that transplantingNT3gene-transfected bone marrow-derived mesenchymal stem cells (BMSCs) is an effective approach to treat SCI, the approach is often low efficient in the delivery of engrafted BMSCs to the site of injury. In this study, we investigated the therapeutic effects of magnetic targeting ofNT3gene-transfected BMSCs via lumbar puncture in a rat model of SCI. With the aid of a magnetic targeting cells delivery system, we can not only deliver the engrafted BMSCs to the site of injury more efficiently, but also perform cells imaging in vivo using MR. In addition, we also found that this composite strategy could significantly improve functional recovery and nerve regeneration compared to transplantingNT3gene-transfected BMSCs without magnetic targeting system. Our results suggest that this composite strategy could be promising for clinical applications.


2011 ◽  
Vol 301 (6) ◽  
pp. L881-L891 ◽  
Author(s):  
Bum-Yong Kang ◽  
Jennifer M. Kleinhenz ◽  
Tamara C. Murphy ◽  
C. Michael Hart

Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O2) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 μM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O2) or hypoxia (10% O2) for 3 wk with or without gavage with RSG (10 mg·kg−1·day−1) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document