scholarly journals Structure, optical and magnetic properties of new Bi0.5Na0.5TiO3- SrMnO3−δ solid solution materials

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dang Duc Dung ◽  
Nguyen The Hung ◽  
Dorj Odkhuu

AbstractThe new Bi0.5Na0.5TiO3-SrMnO3−δ solid solution materials were fabricated via sol–gel method. The random incorporation of Sr and Mn cations into host lattice of Bi0.5Na0.5TiO3 resulted in structural distortion and influenced on the reduction of the optical band gap from 3.07 eV to 1.81 eV for pure Bi0.5Na0.5TiO3 and 9 mol% SrMnO3−δ solid solution into Bi0.5Na0.5TiO3. The magnetic properties of Bi0.5Na0.5TiO3 materials at room temperature were tuned via compensation of diamagnetic material with weak-ferromagnetism to ferromagnetism with low SrMnO3−δ content and combination of paramagnetism/antiferromagnetism-like and ferromagnetism with higher SrMnO3−δ content solid solution in Bi0.5Na0.5TiO3. The tunable magnetic and optical properties of lead-free ferroelectric materials was promising for their application to green electronic devices.

2021 ◽  
Vol 21 (4) ◽  
pp. 2604-2612
Author(s):  
Dang Duc Dung ◽  
Nguyen The Hung

A new solid solution, (1−x)Bi0.5Na0.5TiO3+xBaCoO3−δ materials, was fabricated using the sol–gel method. X-ray diffraction showed that the crystal structure of the compound exhibited rhombohedral symmetry and is similar to the crystal structures of host Bi0.5Na0.5TiO3 materials. Distortions in the structures and reduction in the optical band gaps of the Bi0.5Na0.5TiO3 materials were possibly due to the random incorporation of Ba and Co cations into host lattice materials. The magnetic properties of the Bi0.5Na0.5TiO3 materials were tuned by controlling the concentrations of BaCoO3−δ as the solid solution. We expect that our work will provide valuable information on current methods for integrating ferromagnetic properties into lead-free ferroelectric materials for the development of multiferroic materials.


2006 ◽  
Vol 510-511 ◽  
pp. 286-289
Author(s):  
Hao Wang ◽  
Wei Min Wang ◽  
Zheng Yi Fu ◽  
Tohru Sekino ◽  
Koichi Niihara

Mullite-based nanocomposites with embedded FeCr alloy nanoparticles were synthesized by reduction of sol-gel prepared Al5.4(Fe0.8Cr0.2)0.6Si2O13 solid solution in hydrogen. The feature of the formation of FeCr alloy is characterized by XRD analysis. Structural characterization revealed that the intragranular FeCr alloy nanoparticles along with inter-granular iron grains were obtained in as reduced sample. After acid washing, the intergranular metal grains were eliminated. The static magnetic properties of nanocomposite powders were studied using Magnetic Property Measurement System. It is found that part of the intra-granular metal nanoparticles have superparamagnetic behavior at room temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. Kuppan ◽  
S. Kaleemulla ◽  
N. Madhusudhana Rao ◽  
N. Sai Krishna ◽  
M. Rigana Begam ◽  
...  

Nickel (Ni) doped SnO2powder samples were prepared using solid-state reaction with dopant concentrations in the range of 3 at.% to 15 at.%. The influence of Ni doping on structural, optical, and magnetic properties of the powder samples has been investigated. All the Ni doped powder samples exhibited tetragonal structure of SnO2. A decrease in optical band gap was observed with increase of Ni doping levels. The vibrating sample magnetometer measurements revealed that the Ni doped SnO2powder samples were ferromagnetic at room temperature.


RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6336-6341 ◽  
Author(s):  
S. Ramesh ◽  
Jerald V. Ramaclus ◽  
Edgar Mosquera ◽  
B. B. Das

The optical and magnetic properties of sol–gel synthesized nanocrystalline Ag3(2+x)PrxNb4−xO11+δ (x = 0.0, 0.50 and 1.0; S1–S3) were studied by DRS and VSM plots. Magnetic studies reveal that the samples exhibit ferromagnetism at room temperature.


2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


2011 ◽  
Vol 04 (03) ◽  
pp. 265-269 ◽  
Author(s):  
NAIFENG ZHUANG ◽  
RONGFENG WANG ◽  
XIAOLIN HU ◽  
CAIGEN SONG ◽  
BIN ZHAO ◽  
...  

Co -doped TiO2 crystals (Co:TiO2) were grown by Czochralski growth (CZ) method and the edge-defined film-fed growth (EFG) method, respectively. Therein, EFG was an effective method to grow a higher quality Co:TiO2 crystal without the reverse flow of the melt. This as-grown crystal reaches a larger dimension of 10 mm × 15 mm × 18mm. XRD analysis confirms that as-grown crystal is isostructural with TiO2 rutile phase. Moreover, this crystal has ferromagnetism at room temperature and the magnetic moment of Co ion is 1.25 × 10-2 μB/Co . After annealed at 1273 K, Co:TiO2 crystal enhances obviously its optical transmittance, while this crystal shows diamagnetism due to the disappearance of the ferromagnetic signal.


Author(s):  
T. Pikula ◽  
T. Szumiata ◽  
K. Siedliska ◽  
V. I. Mitsiuk ◽  
R. Panek ◽  
...  

AbstractIn this work, BiFeO3 powders were synthesized by a sol–gel method. The influence of annealing temperature on the structure and magnetic properties of the samples has been discussed. X-ray diffraction studies showed that the purest phase was formed in the temperature range of 400 °C to 550 °C and the samples annealed at a temperature below 550 °C were of nanocrystalline character. Mössbauer spectroscopy and magnetization measurements were used as complementary methods to investigate the magnetic state of the samples. In particular, the appearance of weak ferromagnetic properties, significant growth of magnetization, and spin-glass-like behavior were observed along with the drop of average grain size. Mössbauer spectra were fitted by the model assuming cycloidal modulation of spins arrangement and properties of the spin cycloid were determined and analyzed. Most importantly, it was proved that the spin cycloid does not disappear even in the case of the samples with a particle size well below the cycloid modulation period λ = 62 nm. Furthermore, the cycloid becomes more anharmonic as the grain size decreases. The possible origination of weak ferromagnetism of the nanocrystalline samples has also been discussed.


2018 ◽  
Vol 56 (1A) ◽  
pp. 197
Author(s):  
Nguyen Hoang Tuan

In this study, we present some results on the structure and properties of the solid solution of Bi0.5K0.5TiO3– BiFeCoO3 (BKT – BFCO) by Sol-gel method. Crystal structures of BKT – BFCO solid solutions were studies by XRD and Raman spectroscopy. The results were in good agreement with the previous reports of Bi0.5K0.5TiO3– BiFeO3 (BKT – BFO) and Bi0.5K0.5TiO3 – BiCoO3 (BKT – BCO) solid solutions. The magnetic properties were investigated via unsaturated M-H loop, which showed the competition of paramagnetic and antiferromagnetic ordering in BKT – BFCO. However, differing from the BKT – BFO and BKT – BCO solid solutions, the unclear values of saturated magnetism in BKT – BFCO raised the unexplained question, which needed further studies.


Sign in / Sign up

Export Citation Format

Share Document