scholarly journals Prey capture analyses in the carnivorous aquatic waterwheel plant (Aldrovanda vesiculosa L., Droseraceae)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simon Poppinga ◽  
Jassir Smaij ◽  
Anna Sofia Westermeier ◽  
Martin Horstmann ◽  
Sebastian Kruppert ◽  
...  

AbstractWe investigated the predator-prey interactions between an Australian ecotype of the carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) and its potential natural prey, the water flea Daphnia longicephala (Daphniidae), which also occurs in Australia. A. vesiculosa develops snap-traps, which close within ~10–100 ms after mechanical triggering by zooplankton prey. Prey capture attempts (PCAs) were recorded via high-speed cinematography in the laboratory. From 14 recorded PCAs, nine were successful for the plant (the prey was caught), and five were unsuccessful (prey could escape), resulting in a capture rate of ~64%. The prey animals’ locomotion behaviour (antenna beat frequency and movement type) in trap vicinity or inside the open traps is very variable. Traps were mainly triggered with the second antennae. During trap closure, the animals moved only very little actively. A flight response in reaction to an initiated trap closure was not observed. However, several animals could escape, either by having a “lucky” starting position already outside the triggered trap, by freeing themselves after trap closure, or by being pressed out by the closing trap lobes. According to our observations in the successful PCAs, we hypothesize that the convex curvature of the two trap lobes (as seen from the outside) and the infolded trap rims are structural means supporting the capture and retention of prey. Our results are discussed in a broader biological context and promising aspects for future studies are proposed.

1991 ◽  
Vol 159 (1) ◽  
pp. 109-133 ◽  
Author(s):  
PETER C. WAINWRIGHT ◽  
DAVID M. KRAKLAU ◽  
ALBERT F. BENNETT

The kinematics of prey capture by the chamaeleonid lizard Chamaeleo oustaleti were studied using high-speed cinematography. Three feeding sequences from each of two individuals were analyzed for strike distances of 20 and 35 cm, at 30°C. Ten distances and angles were measured from sequential frames beginning approximately 0.5 s prior to tongue projection and continuing for about 1.0 s. Sixteen additional variables, documenting maximum excursions and the timing of events, were calculated from the kinematic profiles. Quantified descriptions of head, hyoid and tongue movements are presented. Previously unrecognized rapid protraction of the hyobranchial skeleton simultaneously with the onset of tongue projection was documented and it is proposed that this assists the accelerator muscle in powering tongue projection. Acceleration of the tongue occurred in about 20ms, reaching a maximum acceleration of 486 m s−2 and maximum velocity of 5.8m s−1 in 35 cm strikes. Deceleration of the tongue usually began within 5 ms before prey contract and the direction of tongue movement was reversed within 10 ms of prey contact. Retraction of the tongue, caused by shortening of the retractor muscles, reached a maximum velocity of 2.99 ms−1 and was complete 330 ms after prey contact. Projection distance influences many aspects of prey capture kinematics, particularly projection time, tongue retraction time and the extent of gape and head movements during tongue retraction, all of which are smaller in shorter feedings. Though several features of the chameleon strike have apparently been retained from lizards not capable of ballistic tongue projection, key differences are documented. Unlike members of a related family, the Agamidae, C. oustaleti uses no body lunge during prey capture, exhibits gape reduction during tongue projection and strongly depresses the head and jaws during tongue retraction. Note: Present address: Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA.


1992 ◽  
Vol 70 (10) ◽  
pp. 1886-1896 ◽  
Author(s):  
Véronique Goosse ◽  
Vincent L. Bels

High-speed cinematography (100 frames/s) was used to allow quantitative analysis of the kinematic profiles of tongue and jaw displacements during chemosensory activities in the scleroglossan lizard Lacerta viridis. The types of tongue flicking were simple downward extensions (SDE), single oscillations (SOC), and submultiple oscillations (SMOC) of the tongue out of the mouth. The SMOC type involves a downward or upward movement of the tongue performed before a typical oscillation and it is therefore suggested that this is an intermediate category of flick between the typical SOC and MOC of lizards. Closing and opening of the mouth in SDE, SOC, and SMOC cycles may or may not be separated by a stationary stage during which the jaws are held open at a constant gape. The duration of this stationary interval increases from SDE to SMOC. Gape cycles do not show any division into slow and fast stages. The gape is produced largely by depression of the lower jaw; the upper jaw is slightly elevated by protrusion of the tongue. Patterns of correlation of kinematic variables depicting jaw and tongue movements differed between SDE, SOC, and SMOC. A principal component analysis shows that the three flick types overlap in a multivariate space constructed from the kinematic variables depicting jaw and tongue displacements. Overlap between SOC and SMOC categories is greater than that between SOC, SMOC, and SDE categories. The kinematic patterns of tongue displacement during SMOC in Lacerta viridis show similarities with those of MOC in other lizards and in snakes. Kinematically, the pattern of jaw and tongue displacements of Lacerta viridis during chemosensory activities shows similarities with those that occur during drinking and prey capture.


1985 ◽  
Vol 114 (1) ◽  
pp. 443-461 ◽  
Author(s):  
S. L. Tamm ◽  
A. G. Moss

High-speed cinematography of feeding Pleurobrachia revealed a stereo-typed sequence of ciliary motor responses underlying the feeding behaviour of this ctenophore. Prey capture by a tentacle first elicited high frequency beating in all comb rows, propelling the animal forward at a rapid speed for several seconds. This was followed by a brief period of inactivity on some or all comb rows. Then comb rows adjacent to the catching tentacle beat in the reverse direction, causing the ctenophore to spin rapidly toward this side and sweeping the prey-catching tentacle to the opened mouth, which bent towards it. After engulfing the prey, the animal slowly swam forward to re-set the relaxed tentacles as a fishing net. The patterns, timing, onset and coordination of these ciliary responses, particularly the unilateral reversal of comb rows on the catching side, are analysed with respect to possible conducting pathways mediating this behaviour.


1995 ◽  
Vol 73 (2) ◽  
pp. 353-366 ◽  
Author(s):  
John T. Beneski Jr. ◽  
John H. Larsen Jr. ◽  
Brian T. Miller

High-speed cinematography was used to investigate the prey-capture kinematics of six species of mole salamanders (Ambystomatidae). We compared the feeding behavior of the subgenus Ambystoma (A. californiense and A. macrodactylum) with that of the subgenus Linguaelapsus (A. mabeei, A. texanum, A. annulatum, and A. cingulatum). Prey capture by all six species is characterized by a 3-part gape cycle (a period of rapid mouth opening prior to extraoral tongue protraction, followed by a period of relatively stable gape angle during extraoral tongue protraction and retraction, followed by a period of rapid mouth closure), a tongue-extension cycle (protraction and retraction), and anterior head–body displacement. Among the six species, two distinct modes of prey capture are evident: (1) the Ambystoma mode (A. californiense, A. macrodactylum, A. mabeei, and A. texanum), and (2) the Linguaelapsus mode (A. annulatum and A. cingulatum). Most differences in prey-capture kinematics between the two modes are primarily differences of degree rather than the addition or loss of unique behaviors, and include a general reduction in the gape angles and a general increase in the elapsed times associated with specific events in the Linguaelapsus mode. We hypothesize that these differences are primarily the result of a prolonged period of tongue protraction in the Linguaelapsus mode during which the glandular tongue pad is fitted to the prey. In addition to differing from each other, the gape profiles of the ambystomatid subgenera differ markedly from the 4-part gape profiles of plethodontids and salamandrids.


1981 ◽  
Vol 59 (6) ◽  
pp. 1072-1078 ◽  
Author(s):  
David M. Rand ◽  
George V. Lauder

The predatory behavior of the chain pickerel Esox niger was studied by high-speed cinematography to correlate patterns of jaw bone movement with locomotor patterns. Pattern B strikes were initiated at significantly shorter distances from the prey, had higher acceleration rates, and the velocity of mouth opening and suspensorial abduction was greater than for pattern A strikes. No difference was found in the excursion amplitudes of jaw movements between pattern A and pattern B strikes. Significant differences were found between midwater and corner strikes in the amplitude of mouth opening and hyoid depression: both were smaller in corner attacks and suction velocity was higher. Both velocity and amplitude of each mechanical unit in the head can be varied depending on the locomotor pattern and the position of the prey.


1980 ◽  
Vol 84 (1) ◽  
pp. 17-32
Author(s):  
G. V. LAUDER ◽  
S. M. NORTON

Prey capture in the spotted gar, Lepisosteus oculatus, was studied by high-speed cinematography synchronized with electromyographic recordings of cranial muscle activity. Muscle activity patterns were recorded during each of the three major phases of feeding: the initial strike at the prey, manipulation of the prey following capture, and swallowing. With one exception, the obliquus superioris, all muscles at the strike are active in a bilaterally symmetrical pattern. During the manipulation phase two distinct muscle activity patterns occur: one is characterized by symmetrical activity in the epaxial muscles and obliquus inferioris, the other by complete asymmetry between the right and left sternohyoideus, obliquus superioris, and epaxial muscles. Low-amplitude manipulatory movements are characterized by activity in one side of the sternohyoideus only, all other muscles being generally inactive. The adductor mandibulae and obliquus inferioris are always active symmetrically. Asymmetrical activity in the sternohyoideus, epaxial muscles, and obliquus superioris correlates with lateral head movements during feeding and acts to rotate prey into the preferred orientation for swallowing. The pattern of asymmetrical activity between right and left side muscles is discussed in relation to previous studies of feeding which utilized only unilateral muscle recordings.


1992 ◽  
Vol 170 (1) ◽  
pp. 155-186 ◽  
Author(s):  
VERONIQUE DELHEUSY ◽  
VINCENT L. BELS

The kinematics of prey capture, reduction and transport to the oesophagus by the iguanian lizard Oplurus cuvieri were investigated using high-speed cinematography (100–200 frames s−1) and cineradiography (60 frames s−1). Thirty feeding sequences from four individuals were analysed. Feeding sequences were divided into four phases: capture, reduction, transport to the oesophagus and cleaning. Quantified kinematic profiles of the head, jaws, hyoid-tongue complex and displacements of the prey to (capture) and within (other phases) the buccal cavity are presented from cinematographic frames. Twenty additional variables, depicting maximal displacements and the timing of events, were calculated from the profiles. Variables documenting gape cycles were used in a first principal component analysis for studying the kinematic relationships between the phases. Markers were placed in the tongue of two individuals for cineradiographic study to illustrate displacements of the tongue. During prey capture, the jaw cycle is divided into slow opening (SO I and SO II), fast opening (FO) and fast closing (FC) stages. During the reduction phase, jaw cycles do not always involve an SO stage and the first reduction cycle never exhibits an SO stage. During transport, the duration of the SO stages is highly variable. During reduction and transport of the prey, the cyclic tongue movements are very similar. Gape opening during cleaning is not divided into two successive stages. We conclude (1) that the capture, reduction and cleaning cycles may be derived from the transport cycle, (2) that the SO stage is determined by tongue displacements in all the phases, (3) that, in the extensive intraoral food processing, related cyclic tongue-jaw displacements are not different, (4) that gape cycles do not always follow the Bramble and Wake model, and (5) that the evolutionary features proposed for Amniota by Reilly and Lauder are present.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


2014 ◽  
Vol 146 (5) ◽  
pp. 514-527 ◽  
Author(s):  
M. Hrabar ◽  
A. Danci ◽  
S. McCann ◽  
P.W. Schaefer ◽  
G. Gries

AbstractWe studied life history traits of Xenos peckii Kirby (Strepsiptera: Xenidae), a little-known parasite of the paper wasp Polistes fuscatus (Fabricus) (Hymenoptera: Vespidae) in North America. We field-collected 24 wasp nests in early July 2012, isolated parasitised wasps, tracked life history events of X. peckii, and recorded such behaviour as emergence of males and mating by normal-speed and high-speed cinematography. To emerge, males first cut the puparium with their mandibles along an ecdysial suture line, and then push aside the pupal cap during emergence. The endoparasitic females engage in active calling (pheromone release) behaviour by slowly inflating their cephalothorax, and then extruding it even farther out of, and tilting it away from, the host wasp abdomen. Seasonal and diel (afternoon) emergence periods of males coincide with seasonal and diel receptivity and calling periods of females. Males approach calling females in a swaying flight with smooth turns. They typically land on the anterior portion of the host wasp's abdomen, and then step backward until they make contact with the cephalothorax of the female. As soon as their mesothoracic legs contact the female's cephalothorax, they curl around it, and the male initiates mating. Thereafter, the female fully retreats and never re-mates.


2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


Sign in / Sign up

Export Citation Format

Share Document