scholarly journals The expression pattern of OsDim1 in rice and its proposed function

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Henry Akrofi Doku ◽  
Shu-Xian Gan ◽  
Qian Zhu ◽  
Sadia Nadir ◽  
Wei Li ◽  
...  

AbstractDevelopment of plant tissues is dependent on numerous factors, including hormone activity, signaling, cell division, and elongation. In plants, Defective Entry into Mitosis 1 (Dim1) homologs are recognized as pivotal in leaf senescence and progress of normal growth, but their role in rice has not been functionally characterized. The findings presented in this paper suggest that OsDim1 is important in early seedling development, pollen tube elongation, and impacts rice yield components. The gene is expressed in the scutellum, endosperm, embryonic root, shoot, pollen grains and tubes, as well as in several organs of the rice flower. According to the present study findings, RNAi mediated knockdown of OsDim1 resulted in phytohormonal imbalance, reduced amylase activity, affected differentiation of embryonic root elongation zone tissues, suppressed embryonic root and shoot growth, and impaired pollen tube elongation. In contrast, overexpression of OsDim1 showed significant growth in embryonic roots and shoots, while it increased culm length, total number of tillers per plant, seed setting rate, and total number of grains per panicle compared to its wild type line. In summary, we propose OsDim1 plays an important role in seedling growth and pollen tube elongation, and has pleiotropic effects on reproductive tissues.

2017 ◽  
Vol 32 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Natalia Georgieva ◽  
Ivelina Nikolova ◽  
Valentin Kosev ◽  
Yordanka Naydenova

The objective of this study was to evaluate the influence of two organic nanofertilizers, Lithovit and Nagro, on in vitro germination, pollen tube elongation and pollen grain viability of Pisum sativum L cv. Pleven 4. The effect of their application was high and exceeded data for the untreated control (44.2 and 47.23 % regarding pollen germination and pollen tube elongation, respectively), as well as the effect of the control organic algal fertilizer Biofa (17.5 and 27.9 %, respectively). Pollen grains were inoculated in four culture media. A medium containing 15% sucrose and 1% agar had the most stimulating impact on pea pollen grains. Pollen viability, evaluated by staining with 1% carmine, was within limits of 74.72-87.97%. The highest viability of pollen grains was demonstrated after the application of Nagro organic nano-fertlizer.


2016 ◽  
Vol 64 (4) ◽  
pp. 302 ◽  
Author(s):  
Dolja Pavlova

In this work we studied and compared the toxic effect of nickel (Ni) on pollen germination and pollen tube length in Arabis alpina L. collected from serpentine and non-serpentine populations distributed in the Rila mountains, Bulgaria. Pollen grains were treated with prepared standard solutions of 100, 300, 500, and 700 μM Ni as NiCl2 in distilled water. A nutritional medium was also used to assess pollen germination. Nickel inhibited pollen germination and pollen tube elongation in both serpentine and non-serpentine plants. The percentage of germinated pollen in serpentine plants treated with Ni was higher than in non-serpentine plants but there was no difference in pollen tube elongation between groups. However, pollen tubes showed abnormalities such as coiling and swelling of the tip, or burst, and varied considerably among the samples. A complete break of pollen tube elongation is due to such abnormalities. Also, decreased pollen fertility in both populations was found. The plants from serpentines were less sensitive to (i.e. more tolerant of) elevated Ni concentrations commonly found in serpentine soils.


2021 ◽  
Author(s):  
Xiaoyan Yue ◽  
Jiashu Cao

Abstract Functional pollen grains are an essential ingredient of successful reproduction in flowering plants and are protected by outer walls. Pectin methylesterases (PMEs) modify pectin, a structural component of pollen intine. However, there are few studies on PMEs. Artificial microRNA (amiRNA) and overexpression technology was performed to investigate the function of pollen-specific PME gene, BcMF27, in pollen development. Knockdown of BcMF27 led to pollen wall collapse, 20% of which unknown material adhered to. Wall-collapsed pollen had abnormally thick intine outside of the germinal furrows. A portion of the cytoplasm was degraded in the remaining pollen with unknown material on the wall, in addition to a thick intine. Overexpression of BcMF27 resulted in 66.67% pollen wall disruption, causing an abnormally thick intine. In addition, functional interruption of BcMF27 gave rise to pollen tubes twisted in vitro. Taken together, BcMF27 contributes to the intine morphogenesis during pollen development and stabilizes pollen tube elongation. This research can promote knowledge of PMEs function and the molecular mechanism in pollen wall construction.


2021 ◽  
Author(s):  
Xiaoyan Yue ◽  
Jiashu Cao

Abstract Functional pollen grains are an essential ingredient of successful reproduction in flowering plants and are protected by outer walls. Pectin methylesterases (PMEs) modify pectin, a structural component of pollen intine. However, there are few studies on PMEs. Artificial microRNA (amiRNA) and overexpression technology was performed to investigate the function of pollen-specific PME gene, BcMF27, in pollen development. Knockdown of BcMF27 led to pollen wall collapse, 20% of which unknown material adhered to. Wall-collapsed pollen had abnormally thick intine outside of the germinal furrows. A portion of the cytoplasm was degraded in the remaining pollen with unknown material on the wall, in addition to a thick intine. Overexpression of BcMF27 resulted in 66.67% pollen wall disruption, causing an abnormally thick intine. In addition, functional interruption of BcMF27 gave rise to pollen tubes twisted in vitro. Taken together, BcMF27 contributes to the intine morphogenesis during pollen development and stabilizes pollen tube elongation. This research can promote knowledge of PMEs function and the molecular mechanism in pollen wall construction.


2010 ◽  
Vol 135 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Masahumi Johkan ◽  
Tomoko Chiba ◽  
Kazuhiko Mitsukuri ◽  
Satoshi Yamasaki ◽  
Hideyuki Tanaka ◽  
...  

There is concern that high temperatures resulting from global warming could reduce fruit set of tomato (Solanum lycopersicum). However, fruit set of parthenocarpic tomato genotypes, which often bears seedless fruit, is not reduced when grown under a high temperature. The cause of seedless fruit development was studied with the aim of increasing the seed number in parthenocarpic tomato. Ovule number at anthesis in parthenocarpic and non-parthenocarpic fruit did not differ, but the proportion of undeveloped ovules increased with time after anthesis in parthenocarpic tomato, whereas most ovules in non-parthenocarpic tomato developed normally. Pollen grains germinated on the stigma and extruded pollen tubes in parthenocarpic and non-parthenocarpic tomatoes, but in parthenocarpic tomato, pollen tube elongation was markedly inhibited in the style base. Elongation of pollen tubes on agar containing indoleacetic acid (IAA) was depressed in parthenocarpic and non-parthenocarpic tomato plants. p-Chlorophenoxyisobutyric acid (PCIB), which inhibits auxin action, did not affect the fruit set and fresh weight in either type of tomato, although seed number per fruit in parthenocarpic tomato was significantly increased from 13 ± 2 to 74 ± 6 seeds by PCIB treatment. These results indicated that a high IAA concentration in the ovary of parthenocarpic tomato inhibited pollen tube elongation, and that poor fertilization resulted in failure of ovule development. Moreover, floral organs in parthenocarpic tomato were normally developed as in non-parthenocarpic tomato, and seed development could be induced in parthenocarpic tomato by PCIB treatment.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


Sign in / Sign up

Export Citation Format

Share Document