scholarly journals Mandibular prognathism attenuates brain blood flow induced by chewing

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hiroyuki Kanzaki ◽  
Satoshi Wada ◽  
Masao Kumazawa ◽  
Yuko Yamada ◽  
Tomomi Sudo ◽  
...  

AbstractMastication is closely related to brain function. Animal experiments have revealed that tooth loss has a negative influence on brain function. Clinical studies also suggest that normal occlusion is an essential factor for favorable brain function. Mandibular prognathism (MP) usually results in occlusal dysfunction. However, the relationship between MP and brain function remains unclear. In the present study, we examined the relationship between MP and brain function by measuring brain blood flow (BBF). Seventeen subjects with normal occlusion (NORM) and 25 patients with MP participated in this study. The number of occlusal contacts were counted. Electromyography of the masseter muscles during clenching was also recorded. BBF was measured with non-invasive functional near-infrared spectroscopy during calculation task and chewing task. The number of the occlusal contacts and masseter muscle activity were lower in MP compared with NORM. The calculation task increased BBF in both groups. The chewing task also increased BBF in the inferior frontal gyrus in both groups, although the increase in MP was smaller than in NORM. We discovered that patients with MP exhibited a smaller increase in BBF at the inferior frontal gyrus during chewing as compared with NORM. As such, MP would negatively affect brain function.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Satoru Hiwa ◽  
Kenya Hanawa ◽  
Ryota Tamura ◽  
Keisuke Hachisuka ◽  
Tomoyuki Hiroyasu

Functional near-infrared spectroscopy (fNIRS) is suitable for noninvasive mapping of relative changes in regional cortical activity but is limited for quantitative comparisons among cortical sites, subjects, and populations. We have developed a convolutional neural network (CNN) analysis method that learns feature vectors for accurate identification of group differences in fNIRS responses. In this study, subject gender was classified using CNN analysis of fNIRS data. fNIRS data were acquired from male and female subjects during a visual number memory task performed in a white noise environment because previous studies had revealed that the pattern of cortical blood flow during the task differed between males and females. A learned classifier accurately distinguished males from females based on distinct fNIRS signals from regions of interest (ROI) including the inferior frontal gyrus and premotor areas that were identified by the learning algorithm. These cortical regions are associated with memory storage, attention, and task motor response. The accuracy of the classifier suggests stable gender-based differences in cerebral blood flow during this task. The proposed CNN analysis method can objectively identify ROIs using fNIRS time series data for machine learning to distinguish features between groups.


2021 ◽  
Vol 31 (3) ◽  
pp. 172-180
Author(s):  
HIROAKI NAKAMURA ◽  
HIROYUKI KANZAKI ◽  
YUKO YAMADA ◽  
MASUMI MURAKAMI ◽  
ERIKA OZAWA ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 43
Author(s):  
Megumi Mizuno ◽  
Tomoyuki Hiroyasu ◽  
Satoru Hiwa

The ability to coordinate one’s behavior with the others’ behavior is essential to achieve a joint action in daily life. In this paper, the brain activity during synchronized tapping task was measured using functional near infrared spectroscopy (fNIRS) to investigate the relationship between time coordination and brain function. Furthermore, using brain functional network analysis based on graph theory, we examined important brain regions and network structures that serve as the hub when performing the synchronized tapping task. Using the data clustering method, two types of brain function networks were extracted and associated with time coordination, suggesting that they were involved in expectation and imitation behaviors.


2014 ◽  
Vol 7 (4) ◽  
pp. 545-550 ◽  
Author(s):  
Marcelo Bigliassi ◽  
Vinícius Barreto-Silva ◽  
Thiago Ferreira Dias Kanthack ◽  
Leandro Ricardo Altimari

Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 389
Author(s):  
Kogulan Paulmurugan ◽  
Vimalan Vijayaragavan ◽  
Sayantan Ghosh ◽  
Parasuraman Padmanabhan ◽  
Balázs Gulyás

Functional Near-Infrared Spectroscopy (fNIRS) is a wearable optical spectroscopy system originally developed for continuous and non-invasive monitoring of brain function by measuring blood oxygen concentration. Recent advancements in brain–computer interfacing allow us to control the neuron function of the brain by combining it with fNIRS to regulate cognitive function. In this review manuscript, we provide information regarding current advancement in fNIRS and how it provides advantages in developing brain–computer interfacing to enable neuron function. We also briefly discuss about how we can use this technology for further applications.


2019 ◽  
Vol 8 (12) ◽  
pp. 2055 ◽  
Author(s):  
Lindsay Crawford ◽  
Liye Zou ◽  
Paul D. Loprinzi

Background: Memory interference occurs when information (or memory) to be retrieved is interrupted by competing stimuli. Proactive interference (PI) occurs when previously acquired information interferes with newly acquired information, whereas retroactive interference (RI) occurs when newly acquired information interferes with previously acquired information. In animal paradigms, the prefrontal cortex (PFC) has been shown to help facilitate pattern separation, and ultimately, attenuate memory interference. Research evaluating the role of the PFC on memory interference among humans is, however, limited. The present study evaluated the relationship between PFC oxygenation on memory interference among humans, with the null hypothesis being that there is no association between PFC oxygenation and memory interference. Methods: A total of 74 participants (Mage = 20.8 years) completed the study. Participants completed a computerized memory interference task using the AB-DE AC-FG paradigm, with PFC oxyhemoglobin levels measured via functional near-infrared spectroscopy. Results: For PI, the change in oxygenated hemoglobin for encoding list 1 and retrieval of list 1 showed moderate evidence for the null hypothesis (BF01 = 4.05 and 3.28, respectively). For RI, the Bayesian analysis also established moderate evidence for the null hypothesis across all memory task time points. Conclusion: Our study demonstrates evidence of the null hypothesis regarding the relationship between PFC oxygenation and memory interference. Future work should continue to investigate this topic to identify mechanistic correlates of memory interference.


Children ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 219
Author(s):  
Laura Bell ◽  
Z. Ellen Peng ◽  
Florian Pausch ◽  
Vanessa Reindl ◽  
Christiane Neuschaefer-Rube ◽  
...  

The integration of virtual acoustic environments (VAEs) with functional near-infrared spectroscopy (fNIRS) offers novel avenues to investigate behavioral and neural processes of speech-in-noise (SIN) comprehension in complex auditory scenes. Particularly in children with hearing aids (HAs), the combined application might offer new insights into the neural mechanism of SIN perception in simulated real-life acoustic scenarios. Here, we present first pilot data from six children with normal hearing (NH) and three children with bilateral HAs to explore the potential applicability of this novel approach. Children with NH received a speech recognition benefit from low room reverberation and target-distractors’ spatial separation, particularly when the pitch of the target and the distractors was similar. On the neural level, the left inferior frontal gyrus appeared to support SIN comprehension during effortful listening. Children with HAs showed decreased SIN perception across conditions. The VAE-fNIRS approach is critically compared to traditional SIN assessments. Although the current study shows that feasibility still needs to be improved, the combined application potentially offers a promising tool to investigate novel research questions in simulated real-life listening. Future modified VAE-fNIRS applications are warranted to replicate the current findings and to validate its application in research and clinical settings.


Sign in / Sign up

Export Citation Format

Share Document