scholarly journals Succession of microbial populations and nitrogen-fixation associated with the biodegradation of sediment-oil-agglomerates buried in a Florida sandy beach

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Boryoung Shin ◽  
Ioana Bociu ◽  
Max Kolton ◽  
Markus Huettel ◽  
Joel E. Kostka

AbstractThe Deepwater Horizon (DWH) oil spill contaminated coastlines from Louisiana to Florida, burying oil up to 70 cm depth in sandy beaches, posing a potential threat to environmental and human health. The dry and nutrient-poor beach sand presents a taxing environment for microbial growth, raising the question how the biodegradation of the buried oil would proceed. Here we report the results of an in-situ experiment that (i) characterized the dominant microbial communities contained in sediment oil agglomerates (SOAs) of DWH oil buried in a North Florida sandy beach, (ii) elucidated the long-term succession of the microbial populations that developed in the SOAs, and (iii) revealed the coupling of SOA degradation to nitrogen fixation. Orders of magnitude higher bacterial abundances in SOAs compared to surrounding sands distinguished SOAs as hotspots of microbial growth. Blooms of bacterial taxa with a demonstrated potential for hydrocarbon degradation (Gammaproteobacteria, Alphaproteobacteria, Actinobacteria) developed in the SOAs, initiating a succession of microbial populations that mirrored the evolution of the petroleum hydrocarbons. Growth of nitrogen-fixing prokaryotes or diazotrophs (Rhizobiales and Frankiales), reflected in increased abundances of nitrogenase genes (nifH), catalyzed biodegradation of the nitrogen-poor petroleum hydrocarbons, emphasizing nitrogen fixation as a central mechanism facilitating the recovery of sandy beaches after oil contamination.

Author(s):  
Andrew Rogerson ◽  
Fiona Hannah ◽  
Gwen Hauer ◽  
Phillip Cowie

Numbers of naked amoebae (Gymnamoebae) inhabiting the lower intertidal zone of two sandy beaches were estimated using a novel enrichment cultivation method. Samples were collected between June and September, 1999. Beach sand at Kames Bay, Isle of Cumbrae, Scotland contained on average 2604 amoebae cm−3 while at Dania Beach, Florida, USA, sand harboured 4236 amoebae cm−3. This is the first study to focus on the abundance of naked amoebae inhabiting a sandy beach. These numbers are higher than densities generally reported for shallow subtidal sands and show that amoebae must be considered in future studies on the dynamics of sandy beach communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Amina Almushhin ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
...  

AbstractWhite button mushrooms are greatly high perishable and can deteriorate within a few days after harvesting due to physicomechanical damage, respiration, microbial growth of the delicate epidermal structure. For that reason, the present research work was applied to evaluate the effect of chitosan combination with nano-coating treatments on physicochemical parameters and microbial populations on button mushrooms at chilling storage. Nano coating with the addition of nisin 1% (CHSSN/M) established the minimum value for weight loss 12.18%, maintained firmness 11.55 N, and color index profile. Moreover, O2% rate of (CHSSN/M) mushrooms was the lowest at 1.78%; while the highest rate was reported for CO2 24.88% compared to the untreated samples (Control/M) on day 12. Both pH and total soluble solid concentrations increased during storage. Results reported that the (CHSS/M) mushroom significantly (P < 0.05) reduced polyphenol oxidase activity (24.31 U mg−1 Protein) compared with (Control/M) mushrooms that increased faster than the treated samples. (CHSSN/M) treatment was the most efficient in the reduction of yeast and mold, aerobic plate microorganisms (5.27–5.10 log CFU/g), respectively. The results established that nano-coating film might delay the aging degree and accompany by marked prolongation of postharvest mushroom freshness.


2021 ◽  
Author(s):  
Glenn A. Hyndes ◽  
Emma Berdan ◽  
Cristian Duarte ◽  
Jenifer E. Dugan ◽  
Kyle A. Emery ◽  
...  

Sandy beaches are iconic interfaces that functionally link the ocean with the land by the flow of marine organic matter. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examime the spatial scaling of the influence of these processes across the broader seascape and landscape, and identify key gaps in our knowledge to guide future research directions and priorities. Globally, large quantities of detrital kelp and seagrass can flow into sandy beach ecosystems, where microbial decomposers and animals remineralise and consume the imported organic matter. The supply and retention of wrack are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack break-down, and these can return to coastal waters in surface flows (swash) and the aquifier discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy beach ecosystems underpin a range of ecosystem functions and services, these can be at variance with aesthetic perceptions resulting in widespread activities, such ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects on food webs and biodiversity. Similarly, future sea-level rise and stormier seas are likely to profoundly alter the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.


Author(s):  
Gustavo Mattos ◽  
Ricardo S. Cardoso ◽  
André Souza Dos Santos

Several studies have been conducted to explain patterns of the abundance, richness and diversity of sandy-beach macrofauna; however, such analyses have ignored the overall functional structure of macrofauna communities. Few studies have examined polychaete feeding guilds on sandy beach environments. To examine the effects of environmental factors on polychaete feeding guilds on sandy beaches, 12 sandy beaches from five islands in Sepetiba Bay were sampled. A total of 24 polychaete morphospecies, grouped among 21 families, were identified in these sandy beaches. The polychaete species were classified into 10 feeding guilds, and the SDT guild (suspended-deposit feeders, discretely motile, with tentacles) was the most abundant feeding guild, with 34.2% of total number of organisms. The highest trophic importance index and index of trophic diversity values were recorded on the sheltered beaches. A canonical correspondence analysis showed that the exposure rate, beach length, and grain size of the beach sediment significantly affected the polychaete feeding guild distribution and abundance. We can conclude that sheltered beaches have a higher diversity of feeding guilds than exposed beaches and that the biological descriptors of the feeding guilds are directly associated with the grain size of the sediment.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1316
Author(s):  
Jairo García-Rodríguez ◽  
Cristina Saro ◽  
Iván Mateos ◽  
Jesús S. González ◽  
María Dolores Carro ◽  
...  

Citrus pulp is a highly abundant by-product of the citrus industry. The aim of this study was to assess the effects of replacing extruded maize (EM; 20% of total diet) by dried citrus pulp (DCP; 20%) in a mixed diet on rumen fermentation and microbial populations in Rusitec fermenters. The two diets contained 50% alfalfa hay and 50% concentrate, and the same protein level. Four Rusitec fermenters were used in a cross-over design with two 13-d incubation runs. After 7-d of diet adaptation, diet disappearance, fermentation parameters, microbial growth, and microbial populations were assessed. Fermenters receiving the DCP showed greater pH values and fiber disappearance (p < 0.001) and lower methane production (p = 0.03) than those fed EM. Replacing EM by DCP caused an increase in the proportions of propionate and butyrate (p < 0.001) and a decrease in acetate (p = 0.04). Microbial growth, bacterial diversity, and the quantity of bacteria and protozoa DNA were not affected by the diet, but the relative abundances of fungi and archaea were greater (p < 0.03) in solid and liquid phases of DCP fermenters, respectively. Results indicate that DCP can substitute EM, promoting a more efficient ruminal fermentation.


2020 ◽  
Vol 86 (16) ◽  
Author(s):  
Yoko Masuda ◽  
Haruka Yamanaka ◽  
Zhen-Xing Xu ◽  
Yutaka Shiratori ◽  
Toshihiro Aono ◽  
...  

ABSTRACT Biological nitrogen fixation is an essential reaction in a major pathway for supplying nitrogen to terrestrial environments. Previous culture-independent analyses based on soil DNA/RNA/protein sequencing could globally detect the nitrogenase genes/proteins of Anaeromyxobacter (in the class Deltaproteobacteria), commonly distributed in soil environments and predominant in paddy soils; this suggests the importance of Anaeromyxobacter in nitrogen fixation in soil environments. However, direct experimental evidence is lacking; there has been no research on the genetic background and ability of Anaeromyxobacter to fix nitrogen. Therefore, we verified the diazotrophy of Anaeromyxobacter based on both genomic and culture-dependent analyses using Anaeromyxobacter sp. strains PSR-1 and Red267 isolated from soils. Based on the comparison of nif gene clusters, strains PSR-1 and Red267 as well as strains Fw109-5, K, and diazotrophic Geobacter and Pelobacter in the class Deltaproteobacteria contain the minimum set of genes for nitrogenase (nifBHDKEN). These results imply that Anaeromyxobacter species have the ability to fix nitrogen. In fact, Anaeromyxobacter PSR-1 and Red267 exhibited N2-dependent growth and acetylene reduction activity (ARA) in vitro. Transcriptional activity of the nif gene was also detected when both strains were cultured with N2 gas as a sole nitrogen source, indicating that Anaeromyxobacter can fix and assimilate N2 gas by nitrogenase. In addition, PSR-1- or Red267-inoculated soil showed ARA activity and the growth of the inoculated strains on the basis of RNA-based analysis, demonstrating that Anaeromyxobacter can fix nitrogen in the paddy soil environment. Our study provides novel insights into the pivotal environmental function, i.e., nitrogen fixation, of Anaeromyxobacter, which is a common soil bacterium. IMPORTANCE Anaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid evidence and validation from genomic and culture-based analyses that Anaeromyxobacter fixes nitrogen. This study demonstrates that Anaeromyxobacter harboring nitrogenase genes exhibits diazotrophic ability; moreover, N2-dependent growth was demonstrated in vitro and in the soil environment. Our findings indicate that nitrogen fixation is important for Anaeromyxobacter to survive under nitrogen-deficient environments and provide a novel insight into the environmental function of Anaeromyxobacter, which is a common bacterium in soils.


Author(s):  
S. Neelamani ◽  
Bassam N. Shuhaibar ◽  
Khaled Al-Salem ◽  
Yousef Al-Osairi ◽  
Qusaie E. Karam ◽  
...  

Abstract Maintaining and retaining a quality sandy beach is a primary requirement for attracting people and tourists in any coastal country. Tourism Enterprises Company (TEC) in Kuwait owns 230 m long sandy beach in Ras Al-Ardh Sea Club, Salmiya, Kuwait. The beach has been eroding because of strong hydrodynamics forces from waves and currents. TEC wants to develop a stable sandy beach of 30 m wide. Kuwait Institute for Scientific Research (KISR), Kuwait is assigned to carry out the required scientific studies. In order to make sure a stable quality beach will exist, KISR has carried out the needed studies, which involves the field measurements such as bbathymetry survey, current and tidal variations, physical characteristics of beach soil, beach and sea bed profile, establishing the design parameters such as waves, currents, tide and wind. Hydrodynamic model study using DELFT3D model for the present and for the proposed extended groin conditions with beach nourishment were carried out. Also numerical modeling using GENESIS model to understand the future shore line changes due to the proposed development was carried out. Design of Groins to estimate the weight of armor units and weight of inner layers were carried out. The particle size and quantity of sand needed for reclamation of 30 m wide beach was estimated. Based on the study, it is recommended that the sandy soil to be used for 30 m wide beach nourishment should have D50 greater than 0.42 mm (say 0.5 mm) and D10 greater than 0.25 mm. The borrow pit much be selected by keeping this soil characters in mind. It is recommended to use a submerged offshore breakwater in order to retain the beach sand in place and for reducing the maintenance nourishment. Otherwise, large quantity of the capital nourished beach sand will escape into the deeper water due to strong current coupled with waves and steep seabed slopes. Environmental Impact Study was carried out as per Kuwait Environment Public Authority requirements to bring out the impacts due to beach filling and the construction submerged offshore barrier and extension of east groin for a distance of 30 m. TEC will implement the recommendations for developing the beach in Ras Al-Ardh sea club and will be useful to attract more people to use this beach.


1970 ◽  
Vol 33 (11) ◽  
pp. 500-505 ◽  
Author(s):  
D. F. Splittstoesser

Considerable variation was observed in the microbial populations present on raw plant foods. Equipment contamination and microbial growth on the product following harvest often were responsible for high microbial counts. Because of these factors, vegetables protected by a pod or husk frequently were more heavily contaminated than those exposed to soil and air throughout their growth history. Similar types of microorganisms were isolated from raw and post-blanch samples of peas and green beans. The samples recontaminated after the blanch generally contained a higher proportion of catalase-negative cocci. Some of the properties of the more numerous groups are presented. Many of the isolates were sufficiently different from “type” cultures that they could not be readily placed into described species.


2014 ◽  
Vol 896 ◽  
pp. 521-524 ◽  
Author(s):  
Muhammad Farid ◽  
Kirbani Sri Brotopuspito ◽  
Wahyudi ◽  
Sunarto ◽  
Wiwit Suryanto

North Bengkulu district has an area prone to earthquakes, because this area is very closed to the Sumatra subduction zone to the Eurasian tectonic plate. Coastal area in this region is experiencing with the very fast erosion. This is thought to have relation with earthquake-prone zones. This study aims to find the relationship between Ground Shear Strain (GSS) and rate of erosion in the coastal area of North Bengkulu. The data of coastal erosion rate was obtained by overlaying shoreline in 1947 and 2012. The GSS can be obtained by multiplying Seismic Vulnerability Index (SVI) and Peak Ground Acceleration (PGA) values around the shoreline. Seismic Vulnerability Index was obtained by processing microseismic data acquired using three component in short period of seismometers. The PGA was obtained from the historical earthquake and calculated by using Fukushima-Tanaka equation. The results show that the value of GSS varies between 0.0001 to 0.0055, and the SVI values is ranging from 1.2 to 16.1. In addition, we estimated that PGA value is 92 to 120 and the rate of erosion between 3.6 up to 5.8 m/yr. GSS value for each type of coastal is 0.00046 for the fine sandy beach flat, 0.0043 for flat coastal muddy, 0.0001 for flat rocky beaches, 0.0006 for sandy beaches to rugged, 0.0003 for steep rocky lava beach, 0.0014 for steep rocky coast of for clay, 0.0011 for bertufa steep sandy beach stones, and 0.0014 for the steep rocky shore tuffaceous clay. It is found that the GSS value depends on the type of coastal. In this case, flat coastal muddy show highest effect on the GSS. Both SVI and GSS can be estimated to be a quadratic relation to the erosion rate.


1984 ◽  
Vol 62 (9) ◽  
pp. 1965-1967 ◽  
Author(s):  
David D. Biesboer

Seasonal changes in nitrogen fixation, numbers of nitrogen-fixing bacteria associated with the roots, and rhizome–root carbohydrates were studied for the broad-leaved cattail, Typha latifolia L. Populations of anaerobic and aerobic diazotrophic bacteria were present on the root surface. Anaerobic bacteria predominated in the diazotrophic association, were more active in the acetylene reduction assay, and generally outnumbered aerobic bacteria by 2 to 1 during maximum rates of seasonal nitrogen fixation. The observed maximum nitrogen fixation rate coincided closely with reproductive development in Typha and peak microbial populations. Starch levels in rhizomes were nearly depleted during the middle of the growing season, whereas free sugar concentrations remained stable. Sugar concentrations in the roots increased rapidly during rhizome–root growth and decreased rapidly prior to peak nitrogenase activity.


Sign in / Sign up

Export Citation Format

Share Document