scholarly journals Likelihood contrasts: a machine learning algorithm for binary classification of longitudinal data

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Riku Klén ◽  
Markku Karhunen ◽  
Laura L. Elo
2021 ◽  
Vol 15 (1) ◽  
pp. 26-43
Author(s):  
Sikha Bagui ◽  
Keenal M. Shah ◽  
Yizhi Hu ◽  
Subhash Bagui

This study proposes a model for building intrusion detection systems. The dataset used, CICIDS 2017, contains 14 different attacks with 85 features for each attack. This high dimensionality of the data is a major challenge when building efficient intrusion detection systems, especially in today's big data environment, since a lot of the features are redundant. The main goal in this paper was to reduce the number of features and present a detailed discussion of the important features. For feature selection, information gain was used in an iterative way, and for classification, a machine learning algorithm, the J48 decision tree algorithm, was used. The important features for the classification of each attack were identified, and the features that were important for classifying multiple attacks were also identified and discussed.


2021 ◽  
Vol 11 (3) ◽  
pp. 92
Author(s):  
Mehdi Berriri ◽  
Sofiane Djema ◽  
Gaëtan Rey ◽  
Christel Dartigues-Pallez

Today, many students are moving towards higher education courses that do not suit them and end up failing. The purpose of this study is to help provide counselors with better knowledge so that they can offer future students courses corresponding to their profile. The second objective is to allow the teaching staff to propose training courses adapted to students by anticipating their possible difficulties. This is possible thanks to a machine learning algorithm called Random Forest, allowing for the classification of the students depending on their results. We had to process data, generate models using our algorithm, and cross the results obtained to have a better final prediction. We tested our method on different use cases, from two classes to five classes. These sets of classes represent the different intervals with an average ranging from 0 to 20. Thus, an accuracy of 75% was achieved with a set of five classes and up to 85% for sets of two and three classes.


2021 ◽  
pp. 399-408
Author(s):  
Aditi Sakalle ◽  
Pradeep Tomar ◽  
Harshit Bhardwaj ◽  
Divya Acharya ◽  
Arpit Bhardwaj

Author(s):  
G. Keerthi Devipriya ◽  
E. Chandana ◽  
B. Prathyusha ◽  
T. Seshu Chakravarthy

Here by in this paper we are interested for classification of Images and Recognition. We expose the performance of training models by using a classifier algorithm and an API that contains set of images where we need to compare the uploaded image with the set of images available in the data set that we have taken. After identifying its respective category the image need to be placed in it. In order to classify images we are using a machine learning algorithm that comparing and placing the images.


Sign in / Sign up

Export Citation Format

Share Document