scholarly journals Image Classification using CNN and Machine Learning

Author(s):  
G. Keerthi Devipriya ◽  
E. Chandana ◽  
B. Prathyusha ◽  
T. Seshu Chakravarthy

Here by in this paper we are interested for classification of Images and Recognition. We expose the performance of training models by using a classifier algorithm and an API that contains set of images where we need to compare the uploaded image with the set of images available in the data set that we have taken. After identifying its respective category the image need to be placed in it. In order to classify images we are using a machine learning algorithm that comparing and placing the images.

2021 ◽  
Vol 11 (3) ◽  
pp. 92
Author(s):  
Mehdi Berriri ◽  
Sofiane Djema ◽  
Gaëtan Rey ◽  
Christel Dartigues-Pallez

Today, many students are moving towards higher education courses that do not suit them and end up failing. The purpose of this study is to help provide counselors with better knowledge so that they can offer future students courses corresponding to their profile. The second objective is to allow the teaching staff to propose training courses adapted to students by anticipating their possible difficulties. This is possible thanks to a machine learning algorithm called Random Forest, allowing for the classification of the students depending on their results. We had to process data, generate models using our algorithm, and cross the results obtained to have a better final prediction. We tested our method on different use cases, from two classes to five classes. These sets of classes represent the different intervals with an average ranging from 0 to 20. Thus, an accuracy of 75% was achieved with a set of five classes and up to 85% for sets of two and three classes.


Sensors ◽  
2017 ◽  
Vol 18 (2) ◽  
pp. 75 ◽  
Author(s):  
Ole Rindal ◽  
Trine Seeberg ◽  
Johannes Tjønnås ◽  
Pål Haugnes ◽  
Øyvind Sandbakk

A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


2021 ◽  
pp. 399-408
Author(s):  
Aditi Sakalle ◽  
Pradeep Tomar ◽  
Harshit Bhardwaj ◽  
Divya Acharya ◽  
Arpit Bhardwaj

2020 ◽  
Vol 44 (1) ◽  
pp. 231-269
Author(s):  
Rong Chen

Abstract Plural marking reaches most corners of languages. When a noun occurs with another linguistic element, which is called associate in this paper, plural marking on the two-component structure has four logically possible patterns: doubly unmarked, noun-marked, associate-marked and doubly marked. These four patterns do not distribute homogeneously in the world’s languages, because they are motivated by two competing motivations iconicity and economy. Some patterns are preferred over others, and this preference is consistently found in languages across the world. In other words, there exists a universal distribution of the four plural marking patterns. Furthermore, holding the view that plural marking on associates expresses plurality of nouns, I propose a hypothetical universal which uses the number of pluralized associates to predict plural marking on nouns. A data set collected from a sample of 100 languages is used to test the hypothetical universal, by employing the machine learning algorithm logistic regression.


2020 ◽  
Vol 34 (5) ◽  
pp. 5884-5899
Author(s):  
Keyu Tao ◽  
Jian Cao ◽  
Yuce Wang ◽  
Julei Mi ◽  
Wanyun Ma ◽  
...  

2020 ◽  
Vol 17 (9) ◽  
pp. 4294-4298
Author(s):  
B. R. Sunil Kumar ◽  
B. S. Siddhartha ◽  
S. N. Shwetha ◽  
K. Arpitha

This paper intends to use distinct machine learning algorithms and exploring its multi-features. The primary advantage of machine learning is, a machine learning algorithm can predict its work automatically by learning what to do with information. This paper reveals the concept of machine learning and its algorithms which can be used for different applications such as health care, sentiment analysis and many more. Sometimes the programmers will get confused which algorithm to apply for their applications. This paper provides an idea related to the algorithm used on the basis of how accurately it fits. Based on the collected data, one of the algorithms can be selected based upon its pros and cons. By considering the data set, the base model is developed, trained and tested. Then the trained model is ready for prediction and can be deployed on the basis of feasibility.


Sign in / Sign up

Export Citation Format

Share Document