scholarly journals Coordination of carbon and nitrogen accumulation and translocation of winter wheat plant to improve grain yield and processing quality

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Chenyang Wang ◽  
Junfeng Hou ◽  
Chenyang Du ◽  
Sujun Liu ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1108 ◽  
Author(s):  
Jiayi Zhang ◽  
Xia Liu ◽  
Yan Liang ◽  
Qiang Cao ◽  
Yongchao Tian ◽  
...  

Rapid and effective acquisition of crop growth information is a crucial step of precision agriculture for making in-season management decisions. Active canopy sensor GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA) is a portable device commonly used for non-destructively obtaining crop growth information. This study intended to expand the applicability of GreenSeeker in monitoring growth status and predicting grain yield of winter wheat (Triticum aestivum L.). Four field experiments with multiple wheat cultivars and N treatments were conducted during 2013–2015 for obtaining canopy normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) synchronized with four agronomic parameters: leaf area index (LAI), leaf dry matter (LDM), leaf nitrogen concentration (LNC), and leaf nitrogen accumulation (LNA). Duration models based on NDVI and RVI were developed to monitor these parameters, which indicated that NDVI and RVI explained 80%, 68–70%, 10–12%, and 67–73% of the variability in LAI, LDM, LNC and LNA, respectively. According to the validation results, the relative root mean square error (RRMSE) were all <0.24 and the relative error (RE) were all <23%. Considering the variation among different wheat cultivars, the newly normalized vegetation indices rNDVI (NDVI vs. the NDVI for the highest N rate) and rRVI (RVI vs. the RVI for the highest N rate) were calculated to predict the relative grain yield (RY, the yield vs. the yield for the highest N rate). rNDVI and rRVI explained 77–85% of the variability in RY, the RRMSEs were both <0.13 and the REs were both <6.3%. The result demonstrates the feasibility of monitoring growth parameters and predicting grain yield of winter wheat with portable GreenSeeker sensor.


2015 ◽  
Vol 72 (1) ◽  
pp. 33-53
Author(s):  
Janusz Kozdój ◽  
Dariusz R. Mańkowski ◽  
Monika Godzina-Sawczuk ◽  
Andrzej Czaplicki

AbstractThe yield-forming potential of winter wheat is determined by several factors, namely total number of shoots per plant and total number of spikelets per spike. The field experiments were conducted during three vegetation seasons at the Plant Breeding and Acclimatization Institute – National Research Institute (PBAI–NRI), located in Radzików, Poland. The objective of this study was a comparative analysis of the structural yield-forming factor levels, which determine grain yield per spike and per plant of the DH lines and standard Izolda cultivar. Results indicate that several DH lines showed some differences in tested morphological structures of plant, yield factor levels and in grain yield per spike and per plant in comparison to standard Izolda, regardless of the year. Mean grain yield per plant of DH lines was 26.5% lower in comparison to standard Izolda only in the second year of study. It was caused by a reduction of productive tillers number. Structural yield-forming potential of DH lines was used in 38% and 59% and in case of Izolda in 47% and 61% (the second and the third year of experiment, respectively). The mean grain yield per spike of DH lines was 14.8% lower than Izolda cultivar only in third year of experiment and it was caused by about 12% lower number of grains per spike. Structural yield-forming potential of DH spikes was used in 82.4%, 85.4% and 84.9% and in case of Izolda in 83.8%, 87% and 89.5% (the first, the second and the third year of experiment, respectively). The grain yield per winter wheat plant (both DH lines and standard Izolda) was significantly correlated with the number of productive tillers per plant (r = 0.80). The grain yield per winter wheat spike (both DH lines and Izolda cultivar) was significantly and highly correlated with the number of grains per spike (r = 0.96), number of fertile spikelets per spike (r = 0.87) and the spike length (r = 0.80). Variation of spike and plant structural yield-forming factors determining grain yield levels were also analyzed. Calculated total variation coefficients values of each analyzed trait during three-year long studies were different depending on plant material – DH lines or standard Izolda. Low variation coefficients values characterized following traits (traits ranked by increasing values for DH lines and standard Izolda, respectively): total spikelets number per spike (6.6 and 6.3%), spike length (11.1 and 12.6%), fertile spikelets number per spike (13.7 and 11.7%), single grain weight (15.0 and 12.2%), shoot length (16.2 and 13.3%), grains number per spikelet (26.4 and 23.3%), total shoots number per plant (23.4 and 29.6%), grains number per spike (30.1 and 28.2%). Higher variation coefficients values were obtained for the following traits: grain yield per spike (40.0 and 35.7%), plant immature tillers number (35.8 and 42.6%), plant productive tillers number (42.2 and 43.2%), spike sterile spikelets number (46.6 and 44.7%) and number of grains per plant (58.3 and 60.5%). The highest values characterized grain yield per plant (66.9 and 60.8%).


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11467
Author(s):  
Zhen Zhang ◽  
Zhenwen Yu ◽  
Yongli Zhang ◽  
Yu Shi

Background Exploring suitable split nitrogen management is essential for winter wheat production in the Huang-Huai-Hai Plain of China (HPC) under water-saving irrigation conditions, which can increase grain and protein yields by improving nitrogen translocation, metabolic enzyme activity and grain nitrogen accumulation. Methods Therefore, a 2-year field experiment was conducted to investigate these effects in HPC. Nitrogen fertilizer was applied at a constant total rate (240 kg/ha), split between the sowing and at winter wheat jointing growth stage in varying ratios, N1 (0% basal and 100% dressing fertilizer), N2 (30% basal and 70% dressing fertilizer), N3 (50% basal and 50% dressing fertilizer), N4 (70% basal and 30% dressing fertilizer), and N5 (100% basal and 0% dressing fertilizer). Results We found that the N3 treatment significantly increased nitrogen accumulation post-anthesis and nitrogen translocation to grains. In addition, this treatment significantly increased flag leaf free amino acid levels, and nitrate reductase and glutamine synthetase activities, as well as the accumulation rate, active accumulation period, and accumulation of 1000-grain nitrogen. These factors all contributed to high grain nitrogen accumulation. Finally, grain yield increase due to N3 ranging from 5.3% to 15.4% and protein yield from 13.7% to 31.6%. The grain and protein yields were significantly and positively correlated with nitrogen transport parameters, nitrogen metabolic enzyme activity levels, grain nitrogen filling parameters. Conclusions Therefore, the use of split nitrogen fertilizer application at a ratio of 50%:50% basal-topdressing is recommended for supporting high grain protein levels and strong nitrogen translocation, in pursuit of high-quality grain yield.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121462 ◽  
Author(s):  
Xueren Cao ◽  
Yong Luo ◽  
Yilin Zhou ◽  
Jieru Fan ◽  
Xiangming Xu ◽  
...  

Genetika ◽  
2012 ◽  
Vol 44 (2) ◽  
pp. 251-258
Author(s):  
Nebojsa Deletic ◽  
Slavisa Stojkovic ◽  
Slavisa Gudzic ◽  
Vladan Djuric ◽  
Miroljub Aksic

This paper presents the two year results of a study dealing with genotypic specificity of some nitrogen accumulation parameters and yield components, as well as their individual and joint influence on grain yield per plant, in twenty Serbian winter wheat cultivars. There were significant differences among the investigated cultivars regarding the all studied traits. Coefficient of variation ranged from 6.81% for 1000 grain mass to 12.91% for total nitrogen accumulation. Cluster analysis showed the studied genotypes divided into two clusters, where larger one was further divided into several smaller clusters. Good definition of clusters is a sign that these traits? pattern is a distinctive property of a genotype. Multiple regression analysis showed that the all four studied traits, as well as intercept value, had significant effect on grain yield. The greatest effect was expressed by number of grain per spike, where standardized regression coefficient (?) was 0.535. Adjusted R2 value (0.984) showed that 98.4% of the observed variation in grain yield was explained by the studied four traits. When biological yield is regarded, only total nitrogen accumulation and intercept value were significant. ? value for total NA was 0.713, and adjusted R2 was 0.787.


Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 237-243
Author(s):  
Slavisa Stojkovic ◽  
Nebojsa Deletic ◽  
Milan Biberdzic ◽  
Jovanka Stojanovic

Some dry substance accumulation and utilization parameters of wheat plant and their influence on grain yield have been studied through a field trial with 20 winter wheat cultivars. The studied parameters value (biological yield dry substance reutilization, number of grains per spike, 1000 grain mass plant height, etc) varried depending of genotypic specificity and environmental conditions. Grain yield was influenced not only by the total dry substance accumulation in plant (i.e. biological yield), but also by this accumulation amount before and after flowering. Yield forming was affected by many parameters, and cultivar range was different for various parameters. The best grain yield was observed in cultivars having elevated values of more than few parameters. The highest mean grain yield was observed in cultivar Tina, and also high grain yield values were found in cultivars Gruza Nevesinjka, and Toplica.


Sign in / Sign up

Export Citation Format

Share Document