scholarly journals Bioactivities of Allium longicuspis Regel against anthracnose of mango caused by Colletotrichum gloeosporioides (Penz.)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dionisio de Guzman Alvindia ◽  
Mark Anthony Angeles Mangoba

AbstractThe present study focused on the effect of Allium longicuspis extracts (ALE) against anthracnose of mango fruit. In vitro tests (mycelial growth and conidial germination) showed that, ALE concentrated from 0.75 to 2.5 g L−1 completely inhibited the growth of Colletotrichum gloesporioides. Cytoplasmic discharge, mycelial and conidial blasts were clearly observed when applied with ALE. The minimum effective concentration (MEC) of ALE at 0.75 g L1 can be applied as protective, curative and simultaneous treatment in mango fruit to inhibit the anthracnose infection. Efficacy of garlic extract was relatively superior to synthetic fungicide based on protective, curative and simultaneous treatments. Twenty chemical components were detected in ALE based on GCMS analysis (Table 1). The six major components were the following: oleyl alcohol, methyl ether (42.04%), γ-sitosterol (15.85%), , 24-norursa-3.12-diene (5.62%), 1-octadecanol methyl ether (4.23%), n-pentadecanol (3.95%) and 2-vinyl-4h-1 3-dithiine (3.76%). The findings support the potential use of ALE as an alternative to synthetic fungicide.

2020 ◽  
Author(s):  
Sara DAronco ◽  
Chiara Giorio ◽  
Federica Chiara ◽  
Roberta Seraglia ◽  
Valerio Di Marco ◽  
...  

<p>Aerosol particle components can mix and interact with oxidants and organic compounds present in the atmosphere. How these chemical components interact and how the interactions affect the Earth’s climate, particle toxicity and human health is largely unknown. In the case of trace metals, the main focus so far has been the determination of the total amount while much less attention has been directed towards the metal speciation. Aqueous phase processing of aerosol can lead to substantial modifications of aerosol chemical and physical properties [1] by promoting the formation of metal-organic ligand complexes in atmospheric aqueous phases, like fog/cloud droplets and deliquescent aerosol. Such process can increase the solubility of metals, therefore their bioavailability [2], and affect their capability to generate reactive oxygen species.</p><p>We investigated the formation of metal-organic ligand complexes, especially those involving small dicarboxylic acids, in urban aerosol collected in the city centre of Padua (Italy), in the Po Valley. We assessed the effects of metal-ligand complexes formation on the solubility and solubilisation kinetic of metals from the particles to aqueous solutions simulating fog/cloud water. We found that solubilisation kinetics of many metals depended on the chemical form in which they were present in the aerosol and they were influenced by the environmental conditions during the campaign. Changes in oxidative potential (OP) and cytotoxicity of particles due to the formation of metal-ligand complexes were investigated by performing acellular and cellular in vitro tests, respectively. Preliminary results showed that metals and their complexed forms are both characterized by different OP and cellular toxicity.</p><p> </p><p>References</p><p>[1] Decesari, S., Sowlat, M. H., Hasheminassab, S., Sandrini, S., Gilardoni, S., Facchini, M. C., Fuzzi, S., and Sioutas, C. Atmos. Chem. Phys., <strong>17</strong>, 7721‑7731 (2017).</p><p>[2] Okochi, H., and Brimblecombe, P. Sci. World J., <strong>2</strong>, 767–786(2002).</p>


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Aniela Saplonţai-Pop ◽  
Augustin Moţ ◽  
Marioara Moldovan ◽  
Radu Oprean ◽  
Radu Silaghi-Dumitrescu ◽  
...  

AbstractBackground: The extracts of Allium cepa are known for their medical use: antioxidant, antiinflammatory, antimicrobial, fibrinolytic and antiplatelet properties. Our study aims to establish, using in vitro tests, the antiplatelet and antioxidant character, the link between them and the extract acidity, from seven varieties of A. cepa. Methodology: The qualitative and quantitative presence of polyphenols and anthocyanins in the extracts was determined using UV-Vis and HPLC. Quantitative determination of the thiosulfinates compounds was calculated using their reaction with 4-mercaptopyridine. Antioxidant character was determined using 3 methods (FC, DPPH and TEAC), and antiplatelet effect was measured by in vitro tests on platelet rich plasma obtained from human blood. Principal Findings/Results: The white variety of A. cepa has the most alkaline pH, the largest amount of thiosulfinate compounds and the most powerful antiplatelet effect, but a very small amount of flavonoids and an antioxidant effect almost nonexistent, in contrast with red variety of A. cepa which is the opposite. Conclusions/Significance: The white variety of A. cepa had very high anitiplatelet activity suggesting the potential use of A. cepa extract in treating cardiovascular diseases.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 110 ◽  
Author(s):  
Angélica Graça ◽  
Lídia Gonçalves ◽  
Sara Raposo ◽  
Helena Ribeiro ◽  
Joana Marto

Polymer-based eye drops are the most used drug delivery system to treat dry eye disease (DED). Therefore, the mucoadhesion between the polymer and the ocular mucin is crucial to ensure the efficacy of the treatment. In this context, the present study aimed to evaluate the potential use of in vitro methods to study the mucoadhesion of eye drop solutions and, specifically to evaluate the efficacy of two hyaluronic acid-based formulations (HA), HA 0.15% and 0.30% (w/v) to treat DED. Rheology methods and zeta potential determination were used to study the mucoadhesive properties of both eye drop solutions. All results indicated that interactions occurred between the mucin and the HA, being stronger with HA 0.30%, due to the physical entanglements and hydrogen bounding. In vitro tests on ARPE-19 cell line were performed using a 2D and a 3D dry eye model and the results have shown that pre-treated cells with HA showed a morphology more similar to the hydrated cells in both products, with a high survival rate. The in vitro techniques used in this study have been shown to be suitable to evaluate and predict mucoadhesive properties and the efficacy of the eye drops on relief or treatment of DED. The results obtained from these methods may help in inferring possible in vivo effects.


2011 ◽  
Vol 81 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Joel Deneau ◽  
Taufeeq Ahmed ◽  
Roger Blotsky ◽  
Krzysztof Bojanowski

Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.


1997 ◽  
Vol 36 (02) ◽  
pp. 71-75 ◽  
Author(s):  
S. Glatz ◽  
S. N. Reske ◽  
K. G. Grillenberger

Summary Aim: One therapeutic approach to rheumatoid arthritis and other inflammatory arthropathies besides surgical removal of inflamed synovium is radiation synovectomy using beta-emitting radionuclides to destroy the affected synovial tissue. Up to now the major problem associated with the use of labeled particles or colloids has been considerable leakage of radionuclides from the injected joint coupled with high radiation doses to liver and other non target organs. In this study we compared 188Re labeled hydroxyapatite particles and 188Re rhenium sulfur colloid for their potential use in radiation synovectomy. Methods: To this end we varied the labeling conditions (concentrations, pH-value, heating procedure) and analyzed the labeling yield, radiochemical purity, and in vitro stability of the resulting radiopharmaceutical. Results: After optimizing labeling conditions we achieved a labeling yield of more than 80% for 188Re hydroxyapatite and more than 90% for the rhenium sulfur colloid. Both of the radiopharmaceuticals can be prepared under aseptic conditions using an autoclav for heating without loss of activity. In vitro stability studies using various challenge solutions (water, normal saline, diluted synovial fluid) showed that 188Re labeled hydroxyapatite particles lost about 80% of their activity within 5 d in synovial fluid. Rhenium sulfur colloid on the other hand proved to be very stable with a remaining activity of more than 93% after 5 d in diluted synovial fluid. Conclusion: These in vitro results suggest that 188Re labeled rhenium sulfur colloid expects to be more suitable for therapeutic use in radiation synovectomy than the labeled hydroxyapatite particles.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


1979 ◽  
Vol 42 (05) ◽  
pp. 1355-1367 ◽  
Author(s):  
C V Prowse ◽  
A Chirnside ◽  
R A Elton

SummaryVarious factor IX concentrates have been examined in a number of in vitro tests of thrombogenicity. The results suggest that some tests are superfluous as in concentrates with activity in any of these tests activation is revealed by a combination of the non-activated partial thromboplastin time, the thrombin (or Xa) generation time and factor VIII inhibitor bypassing activity tests. Assay of individual coagulant enzymes revealed that most concentrates contained more factor IXa than Xa. However only a small number of concentrates, chiefly those that had been purposefully activated, contained appreciable amounts of either enzyme.


1963 ◽  
Vol 10 (01) ◽  
pp. 106-119 ◽  
Author(s):  
E Beck ◽  
R Schmutzler ◽  
F Duckert ◽  

SummaryInhibitor of kallikrein and trypsin (KI) extracted from bovine parotis was compared with ε-aminocaproic acid (EACA): both substances inhibit fibrinolysis induced with streptokinase. EACA is a strong inhibitor of fibrinolysis in concentrations higher than 0, 1 mg per ml plasma. The same amount and higher concentrations are not able to inhibit completely the proteolytic-side reactions of fibrinolysis (fibrinogenolysis, diminution of factor V, rise of fibrin-polymerization-inhibitors). KI inhibits well proteolysis of plasma components in concentrations higher than 2,5 units per ml plasma. Much higher amounts of KI are needed to inhibit fibrinolysis as demonstrated by our in vivo and in vitro tests.Combination of the two substances for clinical use is suggested. Therapeutic possibilities are discussed.


Sign in / Sign up

Export Citation Format

Share Document