scholarly journals Increased blood COASY DNA methylation levels a potential biomarker for early pathology of Alzheimer’s disease

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nobuyuki Kobayashi ◽  
Shunichiro Shinagawa ◽  
Hidehito Niimura ◽  
Hisashi Kida ◽  
Tomoyuki Nagata ◽  
...  
Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Gagandeep Kaur ◽  
Suraj Singh S. Rathod ◽  
Mohammed M. Ghoneim ◽  
Sultan Alshehri ◽  
Javed Ahmad ◽  
...  

DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer’s disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer’s disease, Parkinson’s disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.


2017 ◽  
Vol 14 (7) ◽  
Author(s):  
Vincenzina Nicolia ◽  
Viviana Ciraci ◽  
Rosaria A. Cavallaro ◽  
Isidre Ferrer ◽  
Sigfrido Scarpa ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Miren Altuna ◽  
Amaya Urdánoz-Casado ◽  
Javier Sánchez-Ruiz de Gordoa ◽  
María V. Zelaya ◽  
Alberto Labarga ◽  
...  

Author(s):  
Seyedeh Nazanin Hajjari ◽  
Saeed Sadigh-Eteghad ◽  
Dariush Shanehbandi ◽  
Shahram Teimourian ◽  
Ali Shahbazi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aidan Kenny ◽  
Eva M. Jiménez-Mateos ◽  
María Ascensión Zea-Sevilla ◽  
Alberto Rábano ◽  
Pablo Gili-Manzanaro ◽  
...  

Abstract Alzheimer’s disease (AD) is characterized by a progressive loss of neurons and cognitive functions. Therefore, early diagnosis of AD is critical. The development of practical and non-invasive diagnostic tests for AD remains, however, an unmet need. In the present proof-of-concept study we investigated tear fluid as a novel source of disease-specific protein and microRNA-based biomarkers for AD development using samples from patients with mild cognitive impairment (MCI) and AD. Tear protein content was evaluated via liquid chromatography-mass spectrometry and microRNA content was profiled using a genome-wide high-throughput PCR-based platform. These complementary approaches identified enrichment of specific proteins and microRNAs in tear fluid of AD patients. In particular, we identified elongation initiation factor 4E (eIF4E) as a unique protein present only in AD samples. Total microRNA abundance was found to be higher in tears from AD patients. Among individual microRNAs, microRNA-200b-5p was identified as a potential biomarker for AD with elevated levels present in AD tear fluid samples compared to controls. Our study suggests that tears may be a useful novel source of biomarkers for AD and that the identification and verification of biomarkers within tears may allow for the development of a non-invasive and cost-effective diagnostic test for AD.


2016 ◽  
Vol 43 (7) ◽  
pp. 438-444 ◽  
Author(s):  
Akihito Ohnishi ◽  
Michio Senda ◽  
Tomohiko Yamane ◽  
Tomoko Mikami ◽  
Hiroyuki Nishida ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Anna Gabriel ◽  
Carolin T. Lehner ◽  
Chiara Höhler ◽  
Thomas Schneider ◽  
Tessa P.T. Pfeiffer ◽  
...  

Background: Alzheimer’s disease (AD) affects several cognitive functions and causes altered motor function. Fine motor deficits during object manipulation are evident in other neurological conditions, but have not been assessed in dementia patients yet. Objective: Investigate reactive and anticipatory grip force control in response to unexpected and expected load force perturbation in AD. Methods: Reactive and anticipatory grip force was investigated using a grip-device with force sensors. In this pilot study, fifteen AD patients and fourteen healthy controls performed a catching task. They held the device with one hand while a sandbag was dropped into an attached receptacle either by the experimenter or by the participant. Results: In contrast to studies of other neurological conditions, the majority of AD patients exerted lower static grip force levels than controls. Interestingly, patients who were slow in the Luria’s three-step test produced normal grip forces. The timing and magnitude of reactive grip force control were largely preserved in patients. In contrast, timing and extent of anticipatory grip forces were impaired in patients, although anticipatory control was generally preserved. These deficits were correlated with decreasing Mini-Mental State Examination scores. Apraxia scores, assessed by pantomime of tool-use, did not correlate with performance in the catching task. Conclusion: We interpreted the decreased grip force in AD in the context of loss of strength and lethargy, typical for patients with AD. The lower static grip force during object manipulation may emerge as a potential biomarker for early stages of AD, but more studies with larger sample sizes are necessary.


Author(s):  
Natalia Bezuch ◽  
Steven Bradburn ◽  
Andrew C. Robinson ◽  
Neil Pendleton ◽  
Antony Payton ◽  
...  

Background: The APOE ɛ4 allele is the strongest known genetic risk factor for sporadic Alzheimer’s disease (AD). The neighboring TOMM40 gene has also been implicated in AD due to its close proximity to APOE. Objective: Here we tested whether methylation of the TOMM40-APOE locus may influence ApoE protein levels and AD pathology. Methods: DNA methylation levels across the TOMM40-APOE locus and ApoE levels were measured in superior frontal gyrus tissues of 62 human brains genotyped for APOE and scored for AD neuropathology. Results: Methylation levels within the TOMM40 CpG island in the promoter or APOE CpG island in Exon 4 did not differ between APOE ɛ4 carriers versus non-carriers. However, APOE ɛ4 carriers had significantly higher methylation the APOE promoter compared with non-carriers. Although DNA methylation at TOMM40, APOE promoter region, or APOE did not differ between AD pathological groups, there was a negative association between TOMM40 methylation and CERAD scores. ApoE protein concentrations did not significantly different between APOE ɛ4 carriers and non-carriers, or between AD pathological groups. Finally, there was no correlation between ApoE protein concentrations and DNA methylation levels. Conclusion: APOE gene methylation may not be affected by genotype, relate to AD pathology or ApoE protein levels in the superior frontal gyrus, though, DNA methylation at the ApoE promoter differed between genotype. DNA methylation at TOMM40 associated with amyloid-β plaques and longitudinal fluid intelligence. In sum, these results suggest a complicated regulation of the TOMM40-APOE locus in the brain in controlling ApoE protein levels and AD neuropathology.


2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


Sign in / Sign up

Export Citation Format

Share Document