scholarly journals Assessing the effect of wind farms in fauna with a mathematical model

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pablo Refoyo Román ◽  
Cristina Olmedo Salinas ◽  
Benito Muñoz Araújo

Abstract Energy production by wind turbines has many advantages. The wind is a renewable energy that does not emit greenhouse gases and has caused a considerable increase in wind farms around the world. However, this type of energy is not completely free of impact. In particular, wind turbines displace and kill a wide variety of wild species what forces us to plan their location well. In any case, the determination of the effects of wind farms on fauna, especially the flying one, is difficult to determine and depends on several factors. In this work, we will try to establish a mathematical algorithm that allows us to combine all variables that affect the species with the idea of quantifying the effect that can cause the installation of a wind farm with certain characteristics in a given place. We have considered specific parameters of wind farms, the most relevant environmental characteristics related to the location of the wind farm, and morphological, ethological and legal characteristics in the species. Two types of assessment are established for the definitive valuation. Total Assessment and Weighted Assessment. Total Valuation is established based on a reference scale that will allow us to establish categories of affection for the different species while Weighted valuation allows us to establish which species are most affected.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6582
Author(s):  
Santiago M. López ◽  
Mar Cebrián

This paper lays out the role of the first centre in the world for the integration into the electrical grid of electricity coming from renewable energy (the Spanish acronym for which is CECRE (Centro de Control de Energías Renovables; Control Centre for Renewable Energies)) and the industrial development of large energy suppliers and wind turbine manufacturers in Spain. These two initiatives enabled the development of one of the first integrated markets for this type of energy source. The key contributions were the development of two software programs (wind management and management of solar light incidence), their visual implementation, and centralized digital control. An economic and business history approach is used to show the rise and relative failure of the Spanish wind industry during the period 2004–2015, when Spain became the fourth country after China, the US, and Germany in terms of installed capacity of renewable energy and, in relative terms, the second country after Denmark. This study is unique in that it provides an integrated vision of the reasons for the relative fall of Spain in the world ranking of wind energy producers. The methodology of the economic analysis of industrial policies makes it possible to explain the fall in the relative importance of Spain in the international panorama of wind farms


2014 ◽  
pp. 123-127
Author(s):  
Frank O’Connor

The Irish wind energy sector is booming. In 2012, Irish wind farms supplied enough energy to provide about 15% of Ireland’s electricity demand and power 1.12 million households. In March 2014, The Irish Wind Energy Association (IWEA), an organisation committed to the promotion of wind energy in Ireland, highlighted a planned €7 billion investment in the sector, with a confirmed project pipeline of over 180 new wind schemes. According to a recent TCD/ESRI report, this will bring the total number of jobs in the sector from 3,400 at present to over 8,400 and see a doubling of production of clean, indigenous, renewable energy. The modern wind turbines, which will be rolled out as part of these new schemes are a far cry from the turbines installed over four decades ago at the first commercial wind farm, constructed in 1980 on Crotched Mountain, New Hampshire, USA. A modern turbine such as ...


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1566 ◽  
Author(s):  
Md. Noor-A-Rahim ◽  
M. Khyam ◽  
Xinde Li ◽  
Dirk Pesch

The use of renewable energy has increased dramatically over the past couple of decades. Wind farms, consisting of wind turbines, play a vital role in the generation of renewable energy. For monitoring and maintenance purposes, a wind turbine has a variety of sensors to measure the state of the turbine. Sensor measurements are transmitted to a control center, which is located away from the wind farm, for monitoring and maintenance purposes. It is therefore desirable to ensure reliable wireless communication between the wind turbines and the control center while integrating the observations from different sensors. In this paper, we propose an IoT based communication framework for the purpose of reliable communication between wind turbines and control center. The communication framework is based on repeat-accumulate coded communication to enhance reliability. A fusion algorithm is proposed to exploit the observations from multiple sensors while taking into consideration the unpredictable nature of the wireless channel. The numerical results show that the proposed scheme can closely predict the state of a wind turbine. We also show that the proposed scheme significantly outperforms traditional estimation schemes.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 739 ◽  
Author(s):  
Kyoungboo Yang

The wake of a wind turbine is a crucial factor that decreases the output of downstream wind turbines and causes unsteady loading. Various wake models have been developed to understand it, ranging from simple ones to elaborate models that require long calculation times. However, selecting an appropriate wake model is difficult because each model has its advantages and disadvantages as well as distinct characteristics. Furthermore, determining the parameters of a given wake model is crucial because this affects the calculation results. In this study, a method was introduced of using the turbulence intensity, which can be measured onsite, to objectively define parameters that were previously set according to the subjective judgement of a wind farm designer or general recommended values. To reflect the environmental effects around a site, the turbulence intensity in each direction of the wind farm was considered for four types of analytical wake models: the Jensen, Frandsen, Larsen, and Jensen–Gaussian models. The prediction performances of the wake models for the power deficit and energy production of the wind turbines were compared to data collected from a wind farm. The results showed that the Jensen and Jensen–Gaussian models agreed more with the power deficit distribution of the downstream wind turbines than when the same general recommended parameters were applied in all directions. When applied to energy production, the maximum difference among the wake models was approximately 3%. Every wake model clearly showed the relative wake loss tendency of each wind turbine.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2777
Author(s):  
Christos A. Christodoulou ◽  
Vasiliki Vita ◽  
George-Calin Seritan ◽  
Lambros Ekonomou

During the last decades, renewable energy production has significantly increased in an effort to produce clean energy that will not affect the environment. Governments around the world are focusing on reducing greenhouse gas emissions by increasing the utilization of renewable energy sources in the power chain. Wind farms and wind generators are the main renewable technology that are used worldwide. The main scope of wind farm designers is the achievement of the maximum possible power, restraining the installation cost that is related to the use of a specific number of wind turbines for specific power production, and considering the area of land to be occupied. A harmony search method is presented in this paper for the determination of the optimum number of wind turbines in a wind farm and the total electric power produced. The method is applied for comparison purposes on data from previously published methodologies proving its accuracy and effectiveness. The harmony research method can be used in the studies of wind farm designers aiming to reduce installation costs.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 448
Author(s):  
Jens Nørkær Sørensen ◽  
Gunner Christian Larsen

A numerical framework for determining the available wind power and associated costs related to the development of large-scale offshore wind farms is presented. The idea is to develop a fast and robust minimal prediction model, which with a limited number of easy accessible input variables can determine the annual energy output and associated costs for a specified offshore wind farm. The utilized approach combines an energy production model for offshore-located wind farms with an associated cost model that only demands global input parameters, such as wind turbine rotor diameter, nameplate capacity, area of the wind farm, number of turbines, water depth, and mean wind speed Weibull parameters for the site. The cost model includes expressions for the most essential wind farm cost elements—such as costs of wind turbines, support structures, cables and electrical substations, as well as costs of operation and maintenance—as function of rotor size, interspatial distance between the wind turbines, and water depth. The numbers used in the cost model are based on previous but updatable experiences from offshore wind farms, and are therefore, in general, moderately conservative. The model is validated against data from existing wind farms, and shows generally a very good agreement with actual performance and cost results for a series of well-documented wind farms.


Author(s):  
A. R. Muñoz ◽  
M. Á. Farfán

Wind is increasingly used as a renewable energy all around the world. Although wind turbines help reduce greenhouse gas emissions, the costs to wildlife cannot be overlooked. To date, monitoring programs and research have mainly focused on the impact of wind farms on birds but negative effects on bats have also reported. Here we compile information related to European free–tailed bat deaths at wind farms in southern Spain. In a world where the demand for renewable energy is rising we highlight the need to better understand and prevent bat fatalities.


Author(s):  
Anand P. Deshmukh ◽  
James T. Allison

Wind energy is a rapidly expanding source of renewable energy, but is highly intermittent. The performance of a wind farm, composed of a collection of wind turbines, depends not only on the placement of wind turbines in a farm, but also control actions taken by individual turbines. The wind turbine placement (layout) design problem involves adjusting turbine locations within a given area to improve a performance objective (such as maximizing annualized energy production). This layout problem has been addressed previously considering the effect of constraints such land configuration, installed capacity, and wake model choice on the performance of wind farms. All the studies, however, ignore the effects of the control system, which can have significant impact on performance. A well designed wind farm — without an optimal controller — will not achieve the full system level optimal performance, and vice-versa. In this article, we propose a novel layout co-design approach that includes optimal control considerations to exploit this synergy between farm layout and control. Layout case studies involving 8 and 12 turbines are presented. An annual energy production improvement of up to 17% is observed when accounting for coupling between control and layout design, when compared to layout-only optimization.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3615
Author(s):  
Adelaide Cerveira ◽  
Eduardo J. Solteiro Pires ◽  
José Baptista

Green energy has become a media issue due to climate changes, and consequently, the population has become more aware of pollution. Wind farms are an essential energy production alternative to fossil energy. The incentive to produce wind energy was a government policy some decades ago to decrease carbon emissions. In recent decades, wind farms were formed by a substation and a couple of turbines. Nowadays, wind farms are designed with hundreds of turbines requiring more than one substation. This paper formulates an integer linear programming model to design wind farms’ cable layout with several turbines. The proposed model obtains the optimal solution considering different cable types, infrastructure costs, and energy losses. An additional constraint was considered to limit the number of cables that cross a walkway, i.e., the number of connections between a set of wind turbines and the remaining wind farm. Furthermore, considering a discrete set of possible turbine locations, the model allows identifying those that should be present in the optimal solution, thereby addressing the optimal location of the substation(s) in the wind farm. The paper illustrates solutions and the associated costs of two wind farms, with up to 102 turbines and three substations in the optimal solution, selected among sixteen possible places. The optimal solutions are obtained in a short time.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 693
Author(s):  
Anna Dóra Sæþórsdóttir ◽  
Margrét Wendt ◽  
Edita Tverijonaite

The interest in harnessing wind energy keeps increasing globally. Iceland is considering building its first wind farms, but its landscape and nature are not only a resource for renewable energy production; they are also the main attraction for tourists. As wind turbines affect how the landscape is perceived and experienced, it is foreseeable that the construction of wind farms in Iceland will create land use conflicts between the energy sector and the tourism industry. This study sheds light on the impacts of wind farms on nature-based tourism as perceived by the tourism industry. Based on 47 semi-structured interviews with tourism service providers, it revealed that the impacts were perceived as mostly negative, since wind farms decrease the quality of the natural landscape. Furthermore, the study identified that the tourism industry considered the following as key factors for selecting suitable wind farm sites: the visibility of wind turbines, the number of tourists and tourist attractions in the area, the area’s degree of naturalness and the local need for energy. The research highlights the importance of analysing the various stakeholders’ opinions with the aim of mitigating land use conflicts and socioeconomic issues related to wind energy development.


Sign in / Sign up

Export Citation Format

Share Document