scholarly journals The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mihkel Örd ◽  
Ilona Faustova ◽  
Mart Loog

Abstract The Spike protein of the novel coronavirus SARS-CoV2 contains an insertion 680SPRRAR↓SV687 forming a cleavage motif RxxR for furin-like enzymes at the boundary of S1/S2 subunits. Cleavage at S1/S2 is important for efficient viral entry into target cells. The insertion is absent in other CoV-s of the same clade, including SARS-CoV1 that caused the 2003 outbreak. However, an analogous cleavage motif was present at S1/S2 of the Spike protein of the more distant Middle East Respiratory Syndrome coronavirus MERS-CoV. We show that a crucial third arginine at the left middle position, comprising a motif RRxR is required for furin recognition in vitro, while the general motif RxxR in common with MERS-CoV is not sufficient for cleavage. Further, we describe a surprising finding that the two serines at the edges of the insert SPRRAR↓SV can be efficiently phosphorylated by proline-directed and basophilic protein kinases. Both phosphorylations switch off furin’s ability to cleave the site. Although phospho-regulation of secreted proteins is still poorly understood, further studies, supported by a recent report of ten in vivo phosphorylated sites in the Spike protein of SARS-CoV2, could potentially uncover important novel regulatory mechanisms for SARS-CoV2.

Author(s):  
Mihkel Örd ◽  
Ilona Faustova ◽  
Mart Loog

AbstractThe Spike protein of the novel coronavirus SARS-CoV2 contains an insertion 680SPRRAR↓SV687 forming a cleavage motif RxxR for furin-like enzymes at the boundary of S1/S2 subunits. Cleavage at S1/S2 is important for efficient viral entry into target cells. The insertion is absent in other CoV-s of the same clade, including SARS-CoV1 that caused the 2003 outbreak. However, an analogous insertion was present in the Spike protein of the more distant Middle East Respiratory Syndrome coronavirus MERS-CoV. We show that a crucial third arginine at the left middle position, comprising a motif RRxR is required for furin recognition in vitro, while the general motif RxxR in common with MERS-CoV is not sufficient for cleavage. Further, we describe a surprising finding that the two serines at the edges of the insert SPRRAR↓SV can be efficiently phosphorylated by proline-directed and basophilic protein kinases. Both phosphorylations switch off furin’s ability to cleave the site. Although phosphoregulation of secreted proteins is still poorly understood, further studies, supported by a recent report of ten in vivo phosphorylated sites in the Spike protein of SARS-CoV2, could potentially uncover important novel regulatory mechanisms for SARS-CoV2.


Author(s):  
Hasanain Abdulhameed Odhar ◽  
Salam Waheed Ahjel ◽  
Suhad Sami Humadi

AbstractCoronavirus disease 2019 is a current pandemic health threat especially for elderly patients with comorbidities. This respiratory disease is caused by a beta coronavirus known as severe acute respiratory syndrome coronavirus 2. The disease can progress into acute respiratory distress syndrome that can be fatal. Currently, no specific drug or vaccine are available to combat this pandemic outbreak. Social distancing and lockdown have been enforced in many places worldwide. The spike protein of coronavirus 2 is essential for viral entry into host target cells via interaction with angiotensin converting enzyme 2. This viral protein is considered a potential target for design and development of a drug or vaccine. Previously, we have reported several potential epitopes on coronavirus 2 spike protein with high antigenicity, low allergenicity and good stability against specified proteases. In the current study, we have constructed and evaluated a peptide vaccine from these potential epitopes by using in silico approach. This construct is predicted to have a protective immunogenicity, low allergenicity and good stability with minor structural flaws in model build. The population coverage of the used T-cells epitopes is believed to be high according to the employed restricted alleles. The vaccine construct can elicit efficient and long-lasting immune response as appeared through simulation analysis. This multiepitope-based peptide vaccine may represent a potential candidate against coronavirus 2. However, further in vitro and in vivo verification are required.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


2021 ◽  
Author(s):  
Amruta Narayanappa ◽  
Elizabeth B Engler-Chiurazzi ◽  
Isabel C Murray-Brown ◽  
Timothy E Gressett ◽  
Ifechukwude J Biose ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin alpha5beta1 and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin alpha5beta1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single- or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 hours after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence and improved lung histology in a majority of mice 72 hours post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin alpha 5 and alpha v (an alpha 5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin alpha5beta1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.


2020 ◽  
Author(s):  
Shang-Jui Tsai ◽  
Chenxu Guo ◽  
Nadia A. Atai ◽  
Stephen J. Gould

AbstractBackgroundIn less than a year from its zoonotic entry into the human population, SARS-CoV-2 has infected more than 45 million people, caused 1.2 million deaths, and induced widespread societal disruption. Leading SARS-CoV-2 vaccine candidates immunize with the viral spike protein delivered on viral vectors, encoded by injected mRNAs, or as purified protein. Here we describe a different approach to SARS-CoV-2 vaccine development that uses exosomes to deliver mRNAs that encode antigens from multiple SARS-CoV-2 structural proteins.ApproachExosomes were purified and loaded with mRNAs designed to express (i) an artificial fusion protein, LSNME, that contains portions of the viral spike, nucleocapsid, membrane, and envelope proteins, and (ii) a functional form of spike. The resulting combinatorial vaccine, LSNME/SW1, was injected into thirteen weeks-old, male C57BL/6J mice, followed by interrogation of humoral and cellular immune responses to the SARS-CoV-2 nucleocapsid and spike proteins, as well as hematological and histological analysis to interrogate animals for possible adverse effects.ResultsImmunized mice developed CD4+, and CD8+ T-cell reactivities that respond to both the SARS-CoV-2 nucelocapsid protein and the SARS-CoV-2 spike protein. These responses were apparent nearly two months after the conclusion of vaccination, as expected for a durable response to vaccination. In addition, the spike-reactive CD4+ T-cells response was associated with elevated expression of interferon gamma, indicative of a Th1 response, and a lesser induction of interleukin 4, a Th2-associated cytokine. Vaccinated mice showed no sign of altered growth, injection-site hypersensitivity, change in white blood cell profiles, or alterations in organ morphology. Consistent with these results, we also detected moderate but sustained anti-nucleocapsid and anti-spike antibodies in the plasma of vaccinated animals.ConclusionTaken together, these results validate the use of exosomes for delivering functional mRNAs into target cells in vitro and in vivo, and more specifically, establish that the LSNME/SW1 vaccine induced broad immunity to multiple SARS-CoV-2 proteins.


Author(s):  
Brian Hetrick ◽  
Sijia He ◽  
Linda D. Chilin ◽  
Deemah Dabbagh ◽  
Farhang Alem ◽  
...  

SUMMARYTimely development of vaccines and antiviral drugs are critical to control the coronavirus disease 2019 (COVID-19) global pandemic 1–6. Current methods for validation of vaccine efficacy involve the use of pseudoviruses, such as the SARS-CoV-2 spike protein (S) pseudotyped lentivirus or vesicular stomatitis virus (VSV), to quantify neutralizing antibodies for blocking viral infection 7–14. The process of pseudovirus infection and quantification is time consuming and can take days to complete. In addition, pseudoviruses contain structural proteins not native to SARS-CoV-2, which may alter particle properties in receptor binding and responses to antibody neutralization 15. Here we describe the development of a new hybrid alphavirus-SARS-CoV-2 particle (Ha-CoV-2) for rapid screening and quantification of neutralization antibodies and antiviral drugs. Ha-CoV-2 is a non-replicating SARS-CoV-2 virus-like particle, composed of only SARS-CoV-2 structural proteins (S, M, N, and E) and a RNA genome derived from a fast expressing alphavirus vector 16. We demonstrate that Ha-CoV-2 can rapidly and robustly express reporter genes in target cells within 3-5 hours following viral entry. We further validate the Ha-CoV-2 system for rapid quantification of neutralization antibodies and antiviral drugs. In addition, we assembled a Ha-CoV-2 particle bearing the D614G mutant spike protein, and found that the mutation led to an approximately 200% increase in virion infectivity. These results demonstrate that Ha-CoV-2 can also be applied for rapid monitoring and quantification of viral mutations for effects on neutralizing antibodies induced by vaccines.


2021 ◽  
Vol 12 (6) ◽  
pp. 719-724
Author(s):  
Santwana Palai ◽  
◽  
Shyam Sundar Kesh ◽  

Thousands of individuals have perished as a result of Covid-19 and it has turned into a global problem. The novel coronavirus 2019 (nCoV-2019), also known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spread rapidly following its discovery in Wuhan patients with acute pneumonia in China. No medication or vaccine are available to treat human coronavirus infection successfully. The alternative therapies and cures are not are effective or authorised to treat Corona virus. Treatments are primarily supportive because no particular pandemic cure has been licenced. New interventions will most likely take months to years to mature. Using antiviral medicinal herbs as an auxiliary or supportive therapy seems to be a viable alternative. The essential oils of medicinal plants have antiviral and immunomodulatory effects. Being rich in antioxidants, essential oils can be used to develop new antiviral remedies. Such beneficial essential oils are being evaluated and exploited for its potent therapeutic use against many viruses. These natural compounds bestow antiviral actions by disrupting the viral life cycle during viral entry, assembly, replication, discharge and virus-specific host targets. This study highlights the essential oils derived from medicinal and aromatic plants with in vitro and in vivo antiviral effects. Essential oils having known pharmacokinetic and pharmacodynamic properties can be repurposed as a strategy against deadly SARS-CoV-2 infection. These essential oils of herbal plants can be an effective therapeutic strategy against SARS-CoV-2 when used along with conventional antiviral medicines.


2016 ◽  
Vol 90 (19) ◽  
pp. 8720-8728 ◽  
Author(s):  
Dapeng Li ◽  
Tan Chen ◽  
Yang Hu ◽  
Yu Zhou ◽  
Qingwei Liu ◽  
...  

ABSTRACTEbola virus (EBOV) is a highly contagious lethal pathogen. As a biosafety level 4 (BSL-4) agent, however, EBOV is restricted to costly BSL-4 laboratories for experimentation, thus significantly impeding the evaluation of EBOV vaccines and drugs. Here, we report an EBOV-like particle (EBOVLP)-based luciferase reporter system that enables the evaluation of anti-EBOV agentsin vitroandin vivooutside BSL-4 facilities. Cotransfection of HEK293T cells with four plasmids encoding the proteins VP40, NP, and GP of EBOV and firefly luciferase (Fluc) resulted in the production of Fluc-containing filamentous particles that morphologically resemble authentic EBOV. The reporter EBOVLP was capable of delivering Fluc into various cultured cells in a GP-dependent manner and was recognized by a conformation-dependent anti-EBOV monoclonal antibody (MAb). Significantly, inoculation of mice with the reporter EBOVLP led to the delivery of Fluc protein into target cells and rapid generation of intense bioluminescence signals that could be blocked by the administration of EBOV neutralizing MAbs. This BSL-4-free reporter system should facilitate high-throughput screening for anti-EBOV drugs targeting viral entry and efficacy testing of candidate vaccines.IMPORTANCEEbola virus (EBOV) researches have been limited to costly biosafety level 4 (BSL-4) facilities due to the lack of animal models independent of BSL-4 laboratories. In this study, we reveal that a firefly luciferase-bearing EBOV-like particle (EBOVLP) with typical filamentous EBOV morphology is capable of delivering the reporter protein into murine target cells bothin vitroandin vivo. Moreover, we demonstrate that the reporter delivery can be inhibited bothin vitroandin vivoby a known anti-EBOV protective monoclonal antibody, 13C6. Our work provides a BSL-4-free system that can facilitate thein vivoevaluation of anti-EBOV antibodies, drugs, and vaccines. The system may also be useful for mechanistic study of the viral entry process.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pui Wang ◽  
Siu-Ying Lau ◽  
Shaofeng Deng ◽  
Pin Chen ◽  
Bobo Wing-Yee Mok ◽  
...  

AbstractSARS-CoV-2 is of zoonotic origin and contains a PRRA polybasic cleavage motif which is considered critical for efficient infection and transmission in humans. We previously reported on a panel of attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction of the spike protein. Here, we characterize pathogenicity, immunogenicity, and protective ability of a further cell-adapted SARS-CoV-2 variant, Ca-DelMut, in in vitro and in vivo systems. Ca-DelMut replicates more efficiently than wild type or parental virus in Vero E6 cells, but causes no apparent disease in hamsters, despite replicating in respiratory tissues. Unlike wild type virus, Ca-DelMut causes no obvious pathological changes and does not induce elevation of proinflammatory cytokines, but still triggers a strong neutralizing antibody and T cell response in hamsters and mice. Ca-DelMut immunized hamsters challenged with wild type SARS-CoV-2 are fully protected, with little sign of virus replication in the upper or lower respiratory tract, demonstrating sterilizing immunity.


2020 ◽  
Author(s):  
Shubhangi Kandwal ◽  
Darren Fayne

Abstract The COVID-19 pandemic has negatively affected human life globally. It has led to economic crises and health emergencies across the world, spreading rapidly among the human population and has caused many deaths. Currently, there are no treatments available for COVID-19 so there is an urgent need to develop therapeutic interventions that could be used against the novel coronavirus infection. In this research, we used computational drug design technologies to repurpose existing drugs as inhibitors of SARS-CoV-2 viral proteins. The Broad Institute’s Drug Repurposing Hub consists of in-development/approved drugs and was computationally screened to identify potential hits which could inhibit protein targets encoded by the SARS-CoV-2 genome. By virtually screening the Broad collection, using rationally designed pharmacophore features, we identified molecules which may be repurposed against viral nucleocapsid and non-structural proteins. The pharmacophore features were generated after careful visualisation of the interactions between co-crystalised ligands and the protein binding site. The ChEMBL database was used to determine the compound’s level of inhibition of SARS-CoV-2 and correlate the predicted viral protein target with whole virus in vitro data. The results from this study may help to accelerate drug development against COVID-19 and the hit compounds should be progressed through further in vitro and in vivo studies on SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document