scholarly journals CRY-dependent plasticity of tetrad presynaptic sites in the visual system of Drosophila at the morning peak of activity and sleep

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Milena Damulewicz ◽  
Olga Woźnicka ◽  
Małgorzata Jasińska ◽  
Elżbieta Pyza

Abstract Tetrad synapses are formed between the retina photoreceptor terminals and postsynaptic cells in the first optic neuropil (lamina) of Drosophila. They are remodelled in the course of the day and show distinct functional changes during activity and sleep. These changes result from fast degradation of the presynaptic scaffolding protein Bruchpilot (BRP) by Cryptochrome (CRY) in the morning and depend on BRP-170, one of two BRP isoforms. This process also affects the number of synaptic vesicles, both clear and dense-core, delivered to the presynaptic elements. In cry01 mutants lacking CRY and in brpΔ170, the number of synaptic vesicles is lower in the morning peak of activity than during night-sleep while in wild-type flies the number of synaptic vesicles is similar at these two time points. CRY may also set phase of the circadian rhythm in plasticity of synapses. The process of synapse remodelling stimulates the formation of clear synaptic vesicles in the morning. They carry histamine, a neurotransmitter in tetrad synapses and seem to be formed from glial capitate projections inside the photoreceptor terminals. In turn dense-core vesicles probably carry synaptic proteins building the tetrad presynaptic element.

2021 ◽  
Vol 13 ◽  
Author(s):  
Maria Iuliano ◽  
Connor Seeley ◽  
Ellen Sapp ◽  
Erin L. Jones ◽  
Callie Martin ◽  
...  

Dysfunction at synapses is thought to be an early change contributing to cognitive, psychiatric and motor disturbances in Huntington’s disease (HD). In neurons, mutant Huntingtin collects in aggregates and distributes to the same sites as wild-type Huntingtin including on membranes and in synapses. In this study, we investigated the biochemical integrity of synapses in HD mouse striatum. We performed subcellular fractionation of striatal tissue from 2 and 6-month old knock-in Q175/Q7 HD and Q7/Q7 mice. Compared to striata of Q7/Q7 mice, proteins including GLUT3, Na+/K+ ATPase, NMDAR 2b, PSD95, and VGLUT1 had altered distribution in Q175/Q7 HD striata of 6-month old mice but not 2-month old mice. These proteins are found on plasma membranes and pre- and postsynaptic membranes supporting hypotheses that functional changes at synapses contribute to cognitive and behavioral symptoms of HD. Lipidomic analysis of mouse fractions indicated that compared to those of wild-type, fractions 1 and 2 of 6 months Q175/Q7 HD had altered levels of two species of PIP2, a phospholipid involved in synaptic signaling, increased levels of cholesterol ester and decreased cardiolipin species. At 2 months, increased levels of species of acylcarnitine, phosphatidic acid and sphingomyelin were measured. EM analysis showed that the contents of fractions 1 and 2 of Q7/Q7 and Q175/Q7 HD striata had a mix of isolated synaptic vesicles, vesicle filled axon terminals singly or in clusters, and ER and endosome-like membranes. However, those of Q175/Q7 striata contained significantly fewer and larger clumps of particles compared to those of Q7/Q7. Human HD postmortem putamen showed differences from control putamen in subcellular distribution of two proteins (Calnexin and GLUT3). Our biochemical, lipidomic and EM analysis show that the presence of the HD mutation conferred age dependent disruption of localization of synaptic proteins and lipids important for synaptic function. Our data demonstrate concrete biochemical changes suggesting altered integrity of synaptic compartments in HD mice that may mirror changes in HD patients and presage cognitive and psychiatric changes that occur in premanifest HD.


2012 ◽  
Vol 199 (6) ◽  
pp. 883-891 ◽  
Author(s):  
Rhea van de Bospoort ◽  
Margherita Farina ◽  
Sabine K. Schmitz ◽  
Arthur de Jong ◽  
Heidi de Wit ◽  
...  

Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2–null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2018 ◽  
Author(s):  
Kristin Verena Kaltdorf ◽  
Maria Theiss ◽  
Sebastian Matthias Markert ◽  
Mei Zhen ◽  
Thomas Dandekar ◽  
...  

1.AbstractSynaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical “clear core” vesicles (CCV) and the typically larger “dense core” vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulators [1]. In C. elegans, they play a role in locomotion, dauer formation, egg-laying, and mechano- and chemosensation [2]. Another type of DCVs, also referred to as granulated vesicles, are known to transport Bassoon, Piccolo and further constituents of the presynaptic density in the center of the active zone (AZ), and therefore are important for synaptogenesis [3].To better understand the role of different types of SVs, we present here a new automated approach to classify vesicles. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, the ImageJ macro 3D ART VeSElecT. With that we reliably distinguish CCVs and DCVs in electron tomograms of C. elegans NMJs using image-based features. Analysis of the underlying ground truth data shows an increased fraction of DCVs as well as a higher mean distance between DCVs and AZs in dauer larvae compared to young adult hermaphrodites. Our machine learning based tools are adaptable and can be applied to study properties of different synaptic vesicle pools in electron tomograms of diverse model organisms.2.Author summaryVesicles are important components of the cell, and synaptic vesicles are central for neuronal signaling. Two types of synaptic vesicles can be distinguished by electron microscopy: the classical “clear core” vesicles (CCVs) and the typically larger “dense core” vesicles (DCVs). The distinct appearance of vesicles is caused by their different cargos. To rapidly distinguish between both vesicle types, we present here a new automated approach to classify vesicles in electron tomograms. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, an ImageJ macro, to reliably distinguish CCVs and DCVs using specific image-based features. The approach was trained and validated using data-sets that were hand curated by microscopy experts. Our technique can be transferred to more extensive comparisons in both stages as well as to other neurobiology questions regarding synaptic vesicles.


2019 ◽  
Vol 32 (2) ◽  
pp. 59-66
Author(s):  
Sandra Rocha ◽  
Ranjeet Kumar ◽  
Istvan Horvath ◽  
Pernilla Wittung-Stafshede

Abstract α-Synuclein misfolding results in the accumulation of amyloid fibrils in Parkinson’s disease. Missense protein mutations (e.g. A53T) have been linked to early onset disease. Although α-synuclein interacts with synaptic vesicles in the brain, it is not clear what role they play in the protein aggregation process. Here, we compare the effect of small unilamellar vesicles (lipid composition similar to synaptic vesicles) on wild-type (WT) and A53T α-synuclein aggregation. Using biophysical techniques, we reveal that binding affinity to the vesicles is similar for the two proteins, and both interact with the helix long axis parallel to the membrane surface. Still, the vesicles affect the aggregation of the variants differently: effects on secondary processes such as fragmentation dominate for WT, whereas for A53T, fibril elongation is mostly affected. We speculate that vesicle interactions with aggregate intermediate species, in addition to monomer binding, vary between WT and A53T, resulting in different consequences for amyloid formation.


1971 ◽  
Vol 178 (1053) ◽  
pp. 407-415 ◽  

When frog muscles are exposed for several hours to a solution of isotonic calcium chloride, the secretory response of the motor nerve terminals to imposed depolarization ultimately fails and the rate of spontaneous release of acetylcholine also declines towards zero. The failure of depolarization-evoked transmitter release is irreversible while spontaneous release reappears, though in highly abnormal fashion, when the muscle is returned to a normal ionic medium. Examination of motor end-plates, during various stages of calcium treatment, shows that there is gradual intra-axonal agglutination of synaptic vesicles which is only very incompletely reversible. This effect is presumably the consequence of gradual entry and intracellular accumulation of calcium ions. Analogous treatment with isotonic magnesium, while resulting in immediate loss of evoked transmitter release, does not lead to progressive agglutination of synaptic vesicles, nor to irreversible impairment of the secretory response of the nerve terminal. The possible relations between structural and functional changes during calcium and magnesium treatment are discussed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nina K. Latcheva ◽  
Taylor L. Delaney ◽  
Jennifer M. Viveiros ◽  
Rachel A. Smith ◽  
Kelsey M. Bernard ◽  
...  

AbstractChromatin remodeling proteins of the chromodomain DNA-binding protein family, CHD7 and CHD8, mediate early neurodevelopmental events including neural migration and differentiation. As such, mutations in either protein can lead to neurodevelopmental disorders. How chromatin remodeling proteins influence the activity of mature synapses, however, is relatively unexplored. A critical feature of mature neurons is well-regulated endocytosis, which is vital for synaptic function to recycle membrane and synaptic proteins enabling the continued release of synaptic vesicles. Here we show that Kismet, the Drosophila homolog of CHD7 and CHD8, regulates endocytosis. Kismet positively influenced transcript levels and bound to dap160 and endophilin B transcription start sites and promoters in whole nervous systems and influenced the synaptic localization of Dynamin/Shibire. In addition, kismet mutants exhibit reduced VGLUT, a synaptic vesicle marker, at stimulated but not resting synapses and reduced levels of synaptic Rab11. Endocytosis is restored at kismet mutant synapses by pharmacologically inhibiting the function of histone deacetyltransferases (HDACs). These data suggest that HDAC activity may oppose Kismet to promote synaptic vesicle endocytosis. A deeper understanding of how CHD proteins regulate the function of mature neurons will help better understand neurodevelopmental disorders.


2011 ◽  
Vol 301 (5) ◽  
pp. R1400-R1407 ◽  
Author(s):  
Lisa M. Larkin ◽  
Carol S. Davis ◽  
Catrina Sims-Robinson ◽  
Tatiana Y. Kostrominova ◽  
Holly Van Remmen ◽  
...  

An association between oxidative stress and muscle atrophy and weakness in vivo is supported by elevated oxidative damage and accelerated loss of muscle mass and force with aging in CuZn-superoxide dismutase-deficient ( Sod1−/−) mice. The purpose was to determine the basis for low specific force (N/cm2) of gastrocnemius muscles in Sod1−/− mice and establish the extent to which structural and functional changes in muscles of Sod1−/− mice resemble those associated with normal aging. We tested the hypothesis that muscle weakness in Sod1−/− mice is due to functionally denervated fibers by comparing forces during nerve and direct muscle stimulation. No differences were observed for wild-type mice at any age in the forces generated in response to nerve and muscle stimulation. Nerve- and muscle-stimulated forces were also not different for 4-wk-old Sod1−/− mice, whereas, for 8- and 20-mo-old mice, forces during muscle stimulation were 16 and 30% greater, respectively, than those obtained using nerve stimulation. In addition to functional evidence of denervation with aging, fiber number was not different for Sod1−/− and wild-type mice at 4 wk, but 50% lower for Sod1−/− mice by 20 mo, and denervated motor end plates were prevalent in Sod1−/− mice at both 8 and 20 mo and in WT mice by 28 mo. The data suggest ongoing denervation in muscles of Sod1−/− mice that results in fiber loss and muscle atrophy. Moreover, the findings support using Sod1−/− mice to explore mechanistic links between oxidative stress and the progression of deficits in muscle structure and function.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2161-2161
Author(s):  
Kai Huang ◽  
Monica L. Bailey ◽  
Dwayne L. Barber

Abstract Erythropoietin (EPO), the primary cytokine regulator of red blood cell production, acts through binding to its cognate receptor (EPO-R), which is primarily expressed on erythroid precursors. Knockout studies have illustrated a critical role for EPO, EPO-R and the downstream tyrosine kinase JAK2 in embryogenesis as mice lacking any of these components die from a fatal anemia at E13.5. These data suggest that EPO-R and/or JAK2 are required to promote erythropoiesis in vivo. EPO provides mitogenic, differentiative and cell survival signals to erythroid progenitors. We have performed microarray studies to identify target genes regulated by EPO in cell lines and primary cells. We utilized an erythroid cell line (HCD-57), a myeloid cell line stably expressing the EPO-R (Ba/F3-EPO-R), fetal liver cells isolated from E13.5 mice as well as splenocytes isolated from Phenylhydrazine (PHZ)-primed adult mice. Fetal liver cells permit the study of normal erythropoiesis in a fetal setting whereas the PHZ-primed erythroblasts permit analysis of stress erythropoiesis in adult mice. We harvested cells at 1, 8, 12 and 24 hr after EPO stimulation which correspond to immediate early gene induction (1 hr), S phase entry (8 hr) and G2/M (24 hr) time points. RNA was prepared and hybridized to the Affymetrix U74A mouse chip. Data was analyzed and only those genes with statistical significance (p < 0.05) were considered for further characterization. Analysis of the 1 hr time points has revealed that six genes are co-regulated by EPO in all four cellular environments. Included within this co-hort are the Suppressor of Cytokine Signaling genes (Cis, SOCS-1 and SOCS-3) and Myc, as well as two novel genes. We compared our datasets with other published analyses. The Williams laboratory has identified an Interferon-Stimulated Gene “ISG” data set corresponding to genes induced by Type I or Type II Interferon’s. We queried our PHZ-primed erythroblast data set against the Williams ISG database. Of the 305 human genes in the ISG database, 218 are expressed on the Affymetrix chip. We searched our dataset for genes that are induced 1.5-fold or greater at 2 of 4, 3 of 4 or 4 of 4 time points. Thirty-four genes are also stimulated by EPO in PHZ-primed erythroblasts including classical IFN-regulated genes such as Interferon-regulator factor-1 (IRF-1), Interferon-stimulated gene-15 (ISG-15), Interferon-induced transmembrane protein 3-like (IFITM-3l), Protein Kinase R (PKR) and Signal Transducer and Activator of Transcription-1 (STAT1). We have previously demonstrated that STAT1 is a negative regulator of murine erythropoiesis utilizing STAT1-deficient mice. We also analyzed immediate early gene regulation in fetal liver cells and PHZ-primed erythroblasts isolated from STAT1-deficient mice stimulated with EPO for 1 hr. These data were compared with the relevant wild type data sets. EPO stimulates the induction of the ubiquitin-like protein, ISG-15 in both wild type and STAT1−/− erythroblasts. Several signaling proteins have been shown to be covalently modified by ISG-15 including STAT1. ISG-15 is removed from ISGylated products by the deubiquitinating enzyme, Ubp43. EPO stimulates a rapid accumulation of Ubp43 in wild type cells, however, EPO fails to induce Ubp43 mRNA in STAT1-deficient fetal liver and PHZ-primed erythroblasts. Experiments are underway to confirm that the mechanism by which STAT1 exerts negative regulation of erythropoiesis is via upregulation of the deubiquitinating enzyme, Ubp43.


Sign in / Sign up

Export Citation Format

Share Document