scholarly journals The tree of life of polyamine oxidases

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniele Salvi ◽  
Paraskevi Tavladoraki

Abstract Polyamine oxidases (PAOs) are characterized by a broad variability in catalytic properties and subcellular localization, and impact key cellular processes in diverse organisms. In the present study, a comprehensive phylogenetic analysis was performed to understand the evolution of PAOs across the three domains of life and particularly within eukaryotes. Phylogenetic trees show that PAO-like sequences of bacteria, archaea, and eukaryotes form three distinct clades, with the exception of a few procaryotes that probably acquired a PAO gene through horizontal transfer from a eukaryotic donor. Results strongly support a common origin for archaeal PAO-like proteins and eukaryotic PAOs, as well as a shared origin between PAOs and monoamine oxidases. Within eukaryotes, four main lineages were identified that likely originated from an ancestral eukaryotic PAO before the split of the main superphyla, followed by specific gene losses in each superphylum. Plant PAOs show the highest diversity within eukaryotes and belong to three distinct clades that underwent to multiple events of gene duplication and gene loss. Peptide deletion along the evolution of plant PAOs of Clade I accounted for further diversification of function and subcellular localization. This study provides a reference for future structure–function studies and emphasizes the importance of extending comparisons among PAO subfamilies across multiple eukaryotic superphyla.

1999 ◽  
Vol 9 (8) ◽  
pp. 689-710 ◽  
Author(s):  
Yuri I. Wolf ◽  
L. Aravind ◽  
Nick V. Grishin ◽  
Eugene V. Koonin

Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the β-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies—shared derived characters, such as extra domains or inserts—for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary “standard model” whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.[Complete multiple alignments of all aaRSs from complete genomes as well as the alignments of conserved regions used for phylogenetic tree construction are available at ftp://ncbi.nlm.nih.gov/pub/koonin/aaRS]


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Marcos Godoy ◽  
Daniel A. Medina ◽  
Rudy Suarez ◽  
Sandro Valenzuela ◽  
Jaime Romero ◽  
...  

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 572 ◽  
Author(s):  
Wang

MicroRNA (miRNA) is a small non-coding RNA that functions in the epigenetics control of gene expression, which can be used as a useful biomarker for diseases. Anti-NMDA receptor (anti-NMDAR) encephalitis is an acute autoimmune disorder. Some patients have been found to have tumors, specifically teratomas. This disease occurs more often in females than in males. Most of them have a significant recovery after tumor resection, which shows that the tumor may induce anti-NMDAR encephalitis. In this study, I review microRNA (miRNA) biomarkers that are associated with anti-NMDAR encephalitis and related tumors, respectively. To the best of my knowledge, there has not been any research in the literature investigating the relationship between anti-NMDAR encephalitis and tumors through their miRNA biomarkers. I adopt a phylogenetic analysis to plot the phylogenetic trees of their miRNA biomarkers. From the analyzed results, it may be concluded that (i) there is a relationship between these tumors and anti-NMDAR encephalitis, and (ii) this disease occurs more often in females than in males. This sheds light on this issue through miRNA intervention.


2007 ◽  
Vol 34 (7) ◽  
pp. 589 ◽  
Author(s):  
Tuan Ngoc Le ◽  
Cecilia K. Blomstedt ◽  
Jianbo Kuang ◽  
Jennifer Tenlen ◽  
Donald F. Gaff ◽  
...  

The desiccation tolerant grass Sporobolus stapfianus Gandoger can modulate cellular processes to prevent the imposition of irreversible damage to cellular components by water deficit. The cellular processes conferring this ability are rapidly attenuated by increased water availability. This resurrection plant can quickly restore normal metabolism. Even after loss of more than 95% of its total water content, full rehydration and growth resumption can occur within 24 h. To study the molecular mechanisms of desiccation tolerance in S. stapfianus, a cDNA library constructed from dehydration-stressed leaf tissue, was differentially screened in a manner designed to identify genes with an adaptive role in desiccation tolerance. Further characterisation of four of the genes isolated revealed they are strongly up-regulated by severe dehydration stress and only in desiccation-tolerant tissue, with three of these genes not being expressed at detectable levels in hydrated or dehydrating desiccation-sensitive tissue. The nature of the putative proteins encoded by these genes are suggestive of molecular processes associated with protecting the plant against damage caused by desiccation and include a novel LEA-like protein, and a pore-like protein that may play an important role in peroxisome function during drought stress. A third gene product has similarity to a nuclear-localised protein implicated in chromatin remodelling. In addition, a UDPglucose glucosyltransferase gene has been identified that may play a role in controlling the bioactivity of plant hormones or secondary metabolites during drought stress.


2012 ◽  
Vol 30 (8) ◽  
pp. 628-628
Author(s):  
Cécile Charrier ◽  
Kaumudi Joshi ◽  
Takayuki Sassa ◽  
Jaeda Coutinho‐Budd ◽  
Nelle Lambert ◽  
...  

2016 ◽  
Vol 113 (24) ◽  
pp. 6653-6658 ◽  
Author(s):  
Di You ◽  
Bin-Cheng Yin ◽  
Zhi-Hai Li ◽  
Ying Zhou ◽  
Wen-Bang Yu ◽  
...  

In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes.


2021 ◽  
Author(s):  
David Emms ◽  
Steven Kelly

Determining the evolutionary relationships between gene sequences is fundamental to comparative biological research. However, conducting such analyses requires a high degree of technical proficiency in several computational tools including gene family construction, multiple sequence alignment, and phylogenetic inference. Here we present SHOOT, an easy to use phylogenetic search engine for fast and accurate phylogenetic analysis of biological sequences. SHOOT searches a user-provided query sequence against a database of phylogenetic trees of gene sequences (gene trees) and returns a gene tree with the given query sequence correctly grafted within it. We show that SHOOT can perform this search and placement with comparable speed to a conventional BLAST search. We demonstrate that SHOOT phylogenetic placements are as accurate as conventional multiple sequence alignment and maximum likelihood tree inference approaches. We further show that SHOOT can be used to identify orthologs with equivalent accuracy to conventional orthology inference methods. In summary, SHOOT is an accurate and fast tool for complete phylogenetic analysis of novel query sequences. An easy to use webserver is available online at www.shoot.bio.


2021 ◽  
Author(s):  
Marcia Gumiel ◽  
Oscar M Rollano-Penaloza ◽  
Carmelo Peralta-Rivero ◽  
Leslie Tejeda ◽  
Valeria D. Palma Encinas ◽  
...  

We report the complete chloroplast sequences of two varieties of Theobroma cacao collected in the Bolivian Amazonia using Next-Generation Sequencing. Comparisons made between these two chloroplast genomes and the Belizean reference plastid genome identified 19 and 22 nucleotide variants. The phylogenetic analysis reported three main T. cacao clades belonging to the Forastero, Criollo and Trinitario groups. The Bolivian Native Cacao varieties were located inside the Trinitario group forming their unique branch. The Bolivian Native Cacao branch reveals a possible new subpopulation different from the well-characterized T. cacao subpopulations. The phylogenetic trees showed that the relationships among the T. cacao varieties were consistent with their geographical locations placing the Cacao Center of Origin in Western Amazon. The data presented here will contribute to the usage of ultrabarcoding to distinguish different T. cacao varieties and to identify native cacaos from introduced cacaos. Thus helping in the conservation of local native varieties of T. cacao.


Sign in / Sign up

Export Citation Format

Share Document