scholarly journals Implementation of leakage elimination operators and subspace protection

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
B. G. Markaida ◽  
L.-A. Wu

Abstract Decoherence-induced leakage errors can potentially damage physical or logical qubits embedded in a subspace of the entire Hilbert space by coupling them to other system levels. Here we report the first experimental implementation of Leakage Elimination Operators (LEOs) that aims to reduce this undermining. LEOs are a type of dynamical decoupling control that have been previously introduced to counteract leakage from a chosen subspace into the rest of a Hilbert space, and have been widely explored theoretically. Different from other error correction strategies, LEOs are compatible with any gate sequence in a code space, and thus, compatible with universal quantum computation. Using IBM’s cloud quantum computer (QC), we design three potentially applicable examples of subspaces in two- and three-qubit Hilbert spaces and derive the explicit forms of the corresponding LEOs for these subspaces. For the first time, we experimentally demonstrate that these LEOs significantly suppress leakage. The results also show that the LEO time-scale condition can be satisfied with noise in the IBM’s cloud QC and pave a way for quantum setups to get rid of leakage trouble.

2020 ◽  
Vol 36 (3) ◽  
pp. 475-482
Author(s):  
HONG-KUN XU ◽  
NAJLA ALTWAIJRY ◽  
SOUHAIL CHEBBI

We consider an iterative method for regularization of a variational inequality (VI) defined by a Lipschitz continuous monotone operator in the case where the set of feasible solutions is decomposed to the intersection of finitely many closed convex subsets of a Hilbert space. We prove the strong convergence of the sequence generated by our algorithm. It seems that this is the first time in the literature to handle iterative solution of ill-posed VIs in the domain decomposition case.


Author(s):  
Vivien M. Kendon ◽  
Kae Nemoto ◽  
William J. Munro

We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sung-Sik Lee

Abstract Einstein’s theory of general relativity is based on the premise that the physical laws take the same form in all coordinate systems. However, it still presumes a preferred decomposition of the total kinematic Hilbert space into local kinematic Hilbert spaces. In this paper, we consider a theory of quantum gravity that does not come with a preferred partitioning of the kinematic Hilbert space. It is pointed out that, in such a theory, dimension, signature, topology and geometry of spacetime depend on how a collection of local clocks is chosen within the kinematic Hilbert space.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Leontica ◽  
F. Tennie ◽  
T. Farrow

AbstractSimulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here, we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. We choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.


Author(s):  
Elias Arian ◽  
Werner Pauer

AbstractFor the first time, micromixing characterization for the Villermaux–Dushman reaction could be performed with a non-reactive viscous medium at viscosities up to 2 Pas. As viscous medium, sucrose solution was used with the benefit of being a Newtonian fluid with tuneable viscosity. Due to the higher viscosities in comparison to established media for micromixing investigations, a new protocol for the experimental implementation was developed. Micromixing experiments were conducted and the applicability of viscous sucrose solutions was proven in a stirred tank reactor. Major challenges in characterizing micromixing efficiency in high viscous solution were consolidated.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Quanrun Li ◽  
Chingfang Hsu ◽  
Debiao He ◽  
Kim-Kwang Raymond Choo ◽  
Peng Gong

With the rapid development of quantum computing and quantum information technology, the universal quantum computer will emerge in the near decades with a very high probability and it could break most of the current public key cryptosystems totally. Due to the ability of withstanding the universal quantum computer’s attack, the lattice-based cryptosystems have received lots of attention from both industry and academia. In this paper, we propose an identity-based blind signature scheme using lattice. We also prove that the proposed scheme is provably secure in the random oracle model. The performance analysis shows that the proposed scheme has less mean value of sampling times and smaller signature size than previous schemes. Thus, the proposed scheme is more suitable for practical applications.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


Sign in / Sign up

Export Citation Format

Share Document