scholarly journals Cardioprotective effects of short-term empagliflozin treatment in db/db mice

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bernhard Radlinger ◽  
Florian Hornsteiner ◽  
Sabrina Folie ◽  
Willi Salvenmoser ◽  
Bernhard J. Haubner ◽  
...  

AbstractSodium glucose transporter (SGLT)-2 inhibitors have consistently shown cardioprotective effects independent of the glycemic status of treated patients. In this study we aimed to investigate underlying mechanisms of short-term empagliflozin treatment in a mouse model of type II diabetes. Male db/db mice were fed a western type diet with or without enrichment with empagliflozin for 7 days. While glucose tolerance was significantly improved in empagliflozin treated mice, body weight and fasting insulin levels were comparable in both groups. Cardiac insulin signaling activity indicated by reduced proteinkinase B (AKT) phosphorylation was significantly decreased in the empagliflozin treated group. Remarkably, mitochondrial mass estimated by citrate synthase activity was significantly elevated in empagliflozin treated mice. Accordingly, mitochondrial morphology was significantly altered upon treatment with empagliflozin as analysed by transmission electron microscopy. Additionally, short-term empagliflozin therapy was associated with a changed cardiac tissue cytokine expression in favor of an anti-inflammatory pattern. Our data suggest that early cardioprotection in empagliflozin treated mice is independent of a reduction in body weight or hyperinsulinemia. Ameliorated mitochondrial ultrastructure, attenuated cardiac insulin signaling and diminished cardiac inflammation might contribute to the cardioprotective effects of empagliflozin.

2005 ◽  
Vol 24 (6) ◽  
pp. 313-318 ◽  
Author(s):  
P T Sudharsan ◽  
Y Mythili ◽  
E Selvakumar ◽  
P Varalakshmi

Cyclophosphamide (CP), an alkylating agent widely used in cancer chemotherapy, causes fatal cardiotoxicity. In the present study, lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate were investigated for their possible cardioprotective effects against CP-induced toxicity. Male albino rats of Wistar strain were injected with a single dose of CP (200 mg/kg body weight, ip). In CP-administered rats, activities of lactate dehydrogenase and creatine phosphokinase were elevated in serum with a concomitant decline in their activities in the cardiac tissue. Significant increases (P B < 0.001) in the levels of lipid peroxides and a decrease (P B < 0.001) in the levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione-s-transferase) and nonenzymic (reduced glutathione, vitamin C and vitamin E) antioxidants in the heart were also observed. The cardioprotective effects of lupeol (50 mg/kg body weight for 10 days orally) and its ester, lupeol linoleate (50 mg/kg body weight for 10 days orally) were evident from the significant reversal of the above alterations induced by CP. These observations highlight the antioxidant property of triterpenes and their cytoprotective action against CPinduced cardiotoxicity.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


2020 ◽  
Vol 16 ◽  
Author(s):  
Anupama Sharma ◽  
Renu Bist ◽  
Hemant Pareek

Background:: Current study evaluated the protective potential of quercetin against lindane induced toxicity in mice brain. For investigation, mice were allocated into four groups; First group was control. Second group was administered with oral dose of lindane (25 mg/kg bw) for 4 consecutive days. Third group was exposed to quercetin (40 mg/kg bw) and in fourth group, quercetin was administered 1 hour prior to the exposure of lindane. Objective:: Two major objectives were decided for study. First was to create lesions in the brain by lindane and; second was to evaluate the neuroprotective potential of quercetin. Methods:: To study oxidative responses, level of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), reduced glutathione (GSH), superoxide dismutase (SOD), Catalase (CAT), and glutathione peroxidase (GPx) were measured in brain homogenates. Three key step regulating enzymes of tricarboxylic acid (TCA) cycle viz citrate synthase (CS), pyruvate dehydrogenase (PDH) and fumarase were also assayed. Results:: Lindane treatment significantly enhanced the levels of TBARS (P<0.001),PCC (P<0.001), GPx (P<0.001), SOD (P<0.05), PDH (P<0.05) and fumarase (P<0.001) in brains of mice compared to control. Meanwhile, it alleviated GSH, CAT and CS (P<0.05) activity. Conclusion:: Pretreatment with quercetin in lindane treated group not only restored, previously altered biochemical parameters after lindane treatment and also significantly improved them too which suggests that quercetin is not only invulnerable rather neuroprotective against lindane intoxication.


2020 ◽  
Vol 13 ◽  
Author(s):  
Keshav Kumar ◽  
Tapan Behl ◽  
Arun Kumar ◽  
Sandeep Arora

Background: A chronic metabolic disease, diabetes mellitus (DM), is associated with various comorbidity due to cardiac complications that considerably decreasing the quality of life, but there is no specific medication for this. The recent developed drugs Sodium glucose transporter 2 inhibitors (SGLT2-Is), have action on diabetes as well as on kidney. Current research and studies have shown that SGLT2-Is attenuated the risk of cardiac complication associated with morbidity and hospitalization in diabetes patients. Introduction: Sodium glucose linked transporter 2 (SGLT2) receptors are mainly situated in proximal tubule of nephron. About 90% of glucose concentration is reabsorbed by these receptors in the nephron. The advanced remedy for the management of DM is SGLT2-Is which inhibit or lower the reabsorption of glucose. Objectives: The present review explores the mechanistic principle and the clinical trial data of SGLT2-Is which further support cardioprotective effects associated with these medications. Methods: The review collaborates PUBMED, Google Scholar and Research gate databases, which were explored using keywords and their combinations such as sodium glucose co-transporter 2 inhibitors, diabetes mellitus, cardioprotective effect, empagliflozin, canagliflozin, dapagliflozin and several others, to create an eclectic manuscript. Results: SGLT2-Is showed improvement in diabetes as well as in cardiac complications. These medications decreased HbA1c levels to control hyperglycemia. The mechanism of action of these drugs showed reduction in cardiac oxidative stress, cardiac apoptosis and cardiac inflammation. Besides, SGLT-2-Is showed improvement in cardiac structure and cardiac function. Conclusion: Anti-diabetic drugs, SGLT2-Is have a protective effect against cardiac complications. This indicates that these medication could become first line therapy for cardiac patients with DM.


2021 ◽  
pp. 0310057X2096857
Author(s):  
Brian L Erstad ◽  
Jeffrey F Barletta

There is no consensus on which weight clinicians should use for weight-based dosing of neuromuscular blocking agents (NMBAs), as exemplified by differing or absent recommendations in clinical practice guidelines. The purpose of this paper is to review studies that evaluated various size descriptors for weight-based dosing of succinylcholine and non-depolarising NMBAs, and to provide recommendations for the descriptors of choice for the weight-based dosing of these agents in patients with obesity. All of the studies conducted to date involving depolarising and non-depolarising NMBAs in patients with obesity have assessed single doses or short-term infusions conducted in perioperative settings. Recognising that any final dosing regimen must take into account patient-specific considerations, the available evidence suggests that actual body weight is the size descriptor of choice for weight-based dosing of succinylcholine and that ideal body weight, or an adjusted (or lean) body weight, is the size descriptor of choice for weight-based dosing of non-depolarising NMBAs.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 331
Author(s):  
Jung-Yun Lee ◽  
Tae Yang Kim ◽  
Hanna Kang ◽  
Jungbae Oh ◽  
Joo Woong Park ◽  
...  

Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.


2014 ◽  
Vol 7 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Juliana Ivanova ◽  
Yordanka Gluhcheva ◽  
Sonja Arpadjan ◽  
Mariana Mitewa

ABSTRACT Cadmium (Cd) is a well-known nephrotoxic agent. Cd-induced renal dysfunction has been considered as one of the causes leading to the development of hypertension. The correlation between Cd concentration in blood and urine and cardiovascular diseases has been discussed in many epidemiological studies. A therapy with chelating agents is utilized for the treatment of toxic metal intoxication. Herein we present novel information indicating that monensin (applied as tetraethylammonium salt) is a promising chelating agent for the treatment of Cd-induced renal and cardiac dysfunction. The study was performed using the ICR mouse model. Adult ICR male mice were divided into three groups with six animals in each group: control (received distilled water and food ad libitum for 28 days); Cd-intoxicated (treated orally with 20 mg/kg b.w. Cd(II) acetate from day 1 to day 14 of the experimental protocol), and monensin treated group (intoxicated with Cd(II) acetate as described for the Cd-intoxicated group followed by oral treatment with 16 mg/kg b.w. tetraethylammonium salt of monensic acid for 2 weeks). Cd intoxication of the animals resulted in an increase of the organ weight/body weight indexes. Cd elevated significantly creatinine and glucose level in serum. Monensin treatment improved the organ weight/body weight ratios. The therapy of the Cd-intoxicated animals with monensin ameliorated the creatinine and glucose level in serum and decreased the concentration of the toxic metal ions in the heart and kidneys by 54 % and 64 %, respectively


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Isabella Loughland ◽  
Alexander Little ◽  
Frank Seebacher

Abstract Background Thermal plasticity is pivotal for evolution in changing climates and in mediating resilience to its potentially negative effects. The efficacy to respond to environmental change depends on underlying mechanisms. DNA methylation induced by DNA methyltransferase 3 enzymes in the germline or during early embryonic development may be correlated with responses to environmental change. This developmental plasticity can interact with reversible acclimation within adult organisms, which would increase the speed of response and could alleviate potential mismatches between parental or early embryonic environments and those experienced at later life stages. Our aim was to determine whether there is a causative relationship between DNMT3 enzyme and developmental thermal plasticity and whether either or both interact with short-term acclimation to alter fitness and thermal responses in zebrafish (Danio rerio). Results We developed a novel DNMT3a knock-out model to show that sequential knock-out of DNA methyltransferase 3a isoforms (DNMT3aa−/− and DNMT3aa−/−ab−/−) additively decreased survival and increased deformities when cold developmental temperatures in zebrafish offspring mismatched warm temperatures experienced by parents. Interestingly, short-term cold acclimation of parents before breeding rescued DNMT3a knock-out offspring by restoring survival at cold temperatures. DNMT3a knock-out genotype interacted with developmental temperatures to modify thermal performance curves in offspring, where at least one DNMT3a isoform was necessary to buffer locomotion from increasing temperatures. The thermal sensitivity of citrate synthase activity, an indicator of mitochondrial density, was less severely affected by DNMT3a knock-out, but there was nonetheless a significant interaction between genotype and developmental temperatures. Conclusions Our results show that DNMT3a regulates developmental thermal plasticity and that the phenotypic effects of different DNMT3a isoforms are additive. However, DNMT3a interacts with other mechanisms, such as histone (de)acetylation, induced during short-term acclimation to buffer phenotypes from environmental change. Interactions between these mechanisms make phenotypic compensation for climate change more efficient and make it less likely that thermal plasticity incurs a cost resulting from environmental mismatches.


1996 ◽  
Vol 270 (2) ◽  
pp. E328-E335 ◽  
Author(s):  
A. Chesley ◽  
G. J. Heigenhauser ◽  
L. L. Spriet

The purpose of this study was to examine the regulation (hormonal, substrate, and allosteric) of muscle glycogen phosphorylase (Phos) activity and glycogenolysis after short-term endurance training. Eight untrained males completed 6 days of cycle exercise (2 h/day) at 65% of maximal O2 uptake (Vo2max). Before and after training subjects cycled for 15 min at 80% of Vo2max, and muscle biopsies and blood samples were obtained at 0 and 30 s, 7.5 and 15 min, and 0, 5, 10, and 15 min of exercise. Vo2max was unchanged with training but citrate synthase (CS) activity increased by 20%. Muscle glycogenolysis was reduced by 42% during the 15-min exercise challenge following training (198.8 +/- 36.9 vs. 115.4 +/- 25.1 mmol/kg dry muscle), and plasma epinephrine was blunted at 15 min of exercise. The Phos a mole fraction was unaffected by training. Muscle phosphocreatine utilization and free Pi and AMP accumulations were reduced with training at 7.5 and 15 min of exercise. It is concluded that posttransformational control of Phos, exerted by reductions in substrate (free Pi) and allosteric modulator (free AMP) contents, is responsible for a blunted muscle glycogenolysis after 6 days of endurance training. The increase in CS activity suggests that the reduction of muscle glycogenolysis was due in part to an enhanced mitochondrial potential.


Sign in / Sign up

Export Citation Format

Share Document