scholarly journals Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dong Ji ◽  
Jian-yun Yin ◽  
Dan-feng Li ◽  
Chang-tai Zhu ◽  
Jian-ping Ye ◽  
...  

AbstractMitochondrial response to inflammation is crucial in the metabolic adaptation to infection. This study aimed to explore the mitochondrial response under inflammatory and anti-inflammatory environments, with a focus on the tricarboxylic acid (TCA) cycle. Expression levels of key TCA cycle enzymes and the autophagy-related protein light chain 3b (LC3b) were determined in raw 264.7 cells treated with lipopolysaccharide (LPS) and metformin (Met). Additionally, reactive oxygen species (ROS) levels and mitochondrial membrane potential were assessed using flow cytometry. Moreover, 8-week-old C57BL/6J mice were intraperitoneally injected with LPS and Met to assess the mitochondrial response in vivo. Upon LPS stimulation, the expression of key TCA enzymes, including citrate synthase, α-ketoglutarate dehydrogenase, and isocitrate dehydrogenase 2, and the mitochondrial membrane potential decreased, whereas the levels of LC3b and ROS increased. However, treatment with Met inhibited the reduction of LPS-induced enzyme levels as well as the elevation of LC3b and ROS levels. In conclusion, the mitochondrial TCA cycle is affected by the inflammatory environment, and the LPS-induced effects can be reversed by Met treatment.

2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Reproduction ◽  
2014 ◽  
Vol 147 (5) ◽  
pp. 627-638 ◽  
Author(s):  
Kouji Komatsu ◽  
Akira Iwase ◽  
Miki Mawatari ◽  
Jingwen Wang ◽  
Mamoru Yamashita ◽  
...  

Hormonal stimulation in superovulation induces female mice to ovulate more oocytes than spontaneous ovulation. Because the superovulated oocytes contain a number of oocytes that normally regress before spontaneous ovulation or immature oocytes, the development of some embryos that derive from these oocytes by IVF is prevented. Therefore, the quality of superovulated oocytes should differ from that of spontaneously ovulated oocytes. In this study, we evaluated the quality of superovulated oocytes, by examining 1- and 2-cell stage embryos, in which the development mainly depends on the maternal mRNA, proteins, and mitochondria that are contained in the oocytes, and we then measured the mitochondrial membrane potential (ΔΨm) of the 1- and 2-cell stage,in vivo-fertilized, and IVF embryos. The ΔΨmof 1-cell stage IVF embryos was lower than that ofin vivo-fertilized embryos; however, there was no difference between IVF embryos. During the developmental process from 1- to 2-cell stage, the ΔΨmofin vivo-fertilized embryos was highly upregulated, whereas a number of IVF embryos remained unchanged. As a result, 2-cell stage embryos were divided into two groups: high- and low- ΔΨm2-cell stage IVF embryos. The development of low-ΔΨm2-cell stage IVF embryos tended to be arrested after the 2-cell stage. These results indicated that the upregulation of ΔΨmduring the 1- to 2-cell stage was important in the development of early preimplantation embryos; there were some defects in the mitochondria of superovulated oocytes, which prevented their development.


Nature ◽  
2019 ◽  
Vol 575 (7782) ◽  
pp. 380-384 ◽  
Author(s):  
Milica Momcilovic ◽  
Anthony Jones ◽  
Sean T. Bailey ◽  
Christopher M. Waldmann ◽  
Rui Li ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yinghong Zhou ◽  
Xiaofeng Dong ◽  
Peng Xiu ◽  
Xin Wang ◽  
Jianrong Yang ◽  
...  

Hepatocellular carcinoma (HCC) is regarded as a leading cause of cancer-related deaths, and its progression is associated with hypoxia and the induction of hypoxia-inducible factor (HIF). Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, induces cell death in various malignancies. However, the underlying mechanism remains to be elucidated in HCC, especially under hypoxic conditions. The alteration of COX-2 and HIF-1α oncogenicity was evaluated in HCC specimens by tissue microarray. Cell viability, angiogenesis assays, and xenografted nude mice were used to evaluate the effects of meloxicam, along with flow cytometry to detect the cell cycle, apoptosis, and mitochondrial membrane potential (ΔΨm) of HCC. qRT-PCR, Western blotting, immunofluorescence, immunohistochemistry, luciferase assay, and RNAi were carried out to determine the HIF-1α signaling affected by meloxicam. In this study, we showed that meloxicam exerts antiproliferative and antiangiogenesis efficacy in vitro and in vivo and causes disruption of mitochondrial membrane potential (ΔΨm), thus leading to caspase-dependent apoptosis under hypoxic environments. Exposure to meloxicam significantly reduced HIF-1α transcriptional activation and expression through sequestering it in the cytoplasm and accelerating degradation via increasing the von Hippel-Lindau tumor suppressor protein (pVHL) in HCC. These data demonstrated that inhibition of HIF-1α by meloxicam could suppress angiogenesis and enhance apoptosis of HCC cells. This discovery highlights that COX-2 specific inhibitors may be a promising therapy in the treatment of HCC.


2020 ◽  
Vol 117 (37) ◽  
pp. 23113-23124
Author(s):  
Helena M. Viola ◽  
Ashay A. Shah ◽  
Victoria P. A. Johnstone ◽  
Henrietta Cserne Szappanos ◽  
Mark P. Hodson ◽  
...  

Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in “at risk” patients with identified Gly203Ser gene mutations.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Carsten Esselun ◽  
Bastian Bruns ◽  
Stephanie Hagl ◽  
Rekha Grewal ◽  
Gunter P. Eckert

The Mediterranean plant Silybum marianum L., commonly known as milk thistle, has been used for centuries to treat liver disorders. The flavonolignan silibinin represents a natural antioxidant and the main bioactive ingredient of silymarin (silybin), a standard extract of its seeds. Mitochondrial dysfunction and the associated generation of reactive oxygen/nitrogen species (ROS/RNS) are involved in the development of chronic liver and age-related neurodegenerative diseases. Silibinin A (SIL A) is one of two diastereomers found in silymarin and was used to evaluate the effects of silymarin on mitochondrial parameters including mitochondrial membrane potential and ATP production with and without sodium nitroprusside- (SNP-) induced nitrosative stress, oxidative phosphorylation, and citrate synthase activity in HepG2 and PC12 cells. Both cell lines were influenced by SIL A, but at different concentrations. SIL A significantly weakened nitrosative stress in both cell lines. Low concentrations not only maintained protective properties but also increased basal mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels. However, these effects could not be associated with oxidative phosphorylation. On the other side, high concentrations of SIL A significantly decreased MMP and ATP levels. Although SIL A did not provide a general improvement of the mitochondrial function, our findings show that SIL A protects against SNP-induced nitrosative stress at the level of mitochondria making it potentially beneficial against neurological disorders.


2019 ◽  
Vol 20 (3) ◽  
pp. 650 ◽  
Author(s):  
Sławomir Jaworski ◽  
Barbara Strojny ◽  
Ewa Sawosz ◽  
Mateusz Wierzbicki ◽  
Marta Grodzik ◽  
...  

Due to the development of nanotechnologies, graphene and graphene-based nanomaterials have attracted immense scientific interest owing to their extraordinary properties. Graphene can be used in many fields, including biomedicine. To date, little is known about the impact graphene may have on human health in the case of intentional exposure. The present study was carried out on U87 glioma cells and non-cancer HS-5 cell lines as in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane as in vivo model, on which the effects of pristine graphene platelets (GPs) were evaluated. The investigation consisted of structural analysis of GPs using transmission electron microscopy, Fourier transmission infrared measurements, zeta potential measurements, evaluation of cell morphology, assessment of cell viability, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. The toxicity of U87 glioma tumors was evaluated by calculating the weight and volume of tumors and performing analyses of the ultrastructure, histology, and protein expression. The in vitro results indicate that GPs have dose-dependent cytotoxicity via ROS overproduction and depletion of the mitochondrial membrane potential. The mass and volume of tumors were reduced in vivo after injection of GPs. Additionally, the level of apoptotic and necrotic markers increased in GPs-treated tumors.


2017 ◽  
Vol 29 (1) ◽  
pp. 122
Author(s):  
B. R. Mordhorst ◽  
S. N. Bogue ◽  
K. D. Wells ◽  
J. A. Green ◽  
R. S. Prather

Somatic cells commonly used in nuclear transfer primarily utilise the tricarboxylic acid cycle and cellular respiration for energy production. Comparatively, the metabolism of somatic cells contrasts that of cells within early embryos, which predominantly use glycolysis and exhibit Warburg Effect (WE)-like characteristics. We hypothesised that fibroblast cells can become more blastomere-like if driven either pharmacologically or by oxygen constraint and could result in improved in vitro embryonic development after somatic cell nuclear transfer (SCNT). The pharmaceuticals used (PS48 and CPI-613) should decrease mitochondrial use of the tricarboxylic acid (TCA) cycle and promote the PI3K pathway, respectively. Furthermore, we hypothesised that oxygen constraint (1.3%) would hinder TCA cycle activity and promote glycolysis. The goal was to achieve a WE-like effect in donor cells before nuclear transfer (NT) by treating Day 35 porcine fetal fibroblasts with CPI-613 (100 µM), PS48 (10 µM), both drugs combined (MIX), or as controls (CON, 0 µM) for 7 days under stepwise oxygen constraint (OC; 1.3%) or under normal conditions (ON; 5%). Three biological replicates were collected and data were analysed for main effect of treatment via GLM procedure of SAS 9.4 (SAS Institute Inc., Cary, NC, USA). To determine if our treatments affected mitochondria respiratory capacity (thereby TCA cycle capability) within embryos, we measured mitochondrial membrane potential (Δψm) using JC-10, a biphasic cationic dye. Mitotracker green (MTG) was used to estimate mitochondrial quantity. The percentage of cells with low Δψm was increased (P = 0.02) with any CPI or MIX treatment (treatments ≥ 95%) compared with OC-PS48 and both control (ON and OC) treatments (treatments ≥ 77.4%), whereas ON-PS48 had an intermediate level (90.4%; error = 4.9%). Contrary to our prediction, MTG intensity was lower across all ON treatments compared with OC treatments (NO treatments ≤ 736 AU v. OC treatments ≥ 872 AU; error = 23 AU; P < 0.01). Regardless of oxygen level, controls and PS48 treatments yielded the highest percentages of viable cells (treatments ≥ 94%) and OC-CPI and NO-MIX the lowest (treatments ≤ 86%) with NO-CPI and OC-MIX being intermediate (treatments ≥ 90%; error = 3%; P < 0.01). Oxygen constraint did not promote a reduction in mitochondrial membrane potential in pharmacologically treated fibroblasts. Additionally, intensity of MTG was increased in fibroblasts cultured under oxygen constraint compared with those cultured in 5% oxygen. Our results warrant further investigation of the mitochondrial changes occurring with oxygen deprivation in donor-cells. Experiments are underway to determine if gene expression in cells treated pharmacologically and with oxygen constraint are augmented, and whether these treatments will result in better development after SCNT. This study was funded by Food for the 21 st Century and NIH R01HD080636.


Sign in / Sign up

Export Citation Format

Share Document