scholarly journals Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Stachecka ◽  
Pawel A. Kolodziejski ◽  
Magdalena Noak ◽  
Izabela Szczerbal

AbstractA characteristic spatial distribution of the main chromatin fractions is observed in most mammalian cell nuclei, with euchromatin localized in the interior and heterochromatin at the nuclear periphery. It has been shown that interactions of heterochromatin with the nuclear lamina are necessary to establish this conventional architecture. Adipocytes are specific cells in which a reduction in lamin A/C expression is observed. We hypothesize that the loss of lamin A/C during adipogenic differentiation of mesenchymal stem cells (MSCs) may be associated with the reorganization of the main classes of chromatin in the nucleus. Thus, in this study, we examine the abundance and nuclear distribution of selected heterochromatin (H3K9me3, H3K27me3 and H4K20me3) and euchromatin (H4K8ac, H3K4me3 and H3K9ac) histone marks during in vitro adipogenesis, using the pig as a model organism. We found that not only did the expression of lamin A/C decrease in our differentiation system, but so did the expression of lamin B receptor (LBR). The level of two heterochromatin marks, H3K27me3 and H4K20me3, increased during differentiation, while no changes were observed for H3K9me3. The levels of two euchromatin histone marks, H4K8ac and H3K9ac, were significantly higher in adipocytes than in undifferentiated cells, while the level of H3K4me3 did not change significantly. The spatial distribution of all the examined histone marks altered during in vitro adipogenesis. H3K27me3 and H4K20me3 moved towards the nuclear periphery and H3K9me3 localized preferentially in the intermediate part of adipocyte nuclei. The euchromatin marks H3K9ac and H3K4me3 preferentially occupied the peripheral part of the adipocyte nuclei, while H4K8ac was more evenly distributed in the nuclei of undifferentiated and differentiated cells. Analysis of the nuclear distribution of repetitive sequences has shown their clustering and relocalization toward nuclear periphery during differentiation. Our study shows that dynamic changes in the abundance and nuclear distribution of active and repressive histone marks take place during adipocyte differentiation. Nuclear reorganization of heterochromatin histone marks may allow the maintenance of the nuclear morphology of the adipocytes, in which reduced expression of lamin A/C and LBR is observed.

Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Min Tang ◽  
Rui Chen ◽  
Hao Wang ◽  
Guowei Sun ◽  
Fan Yin ◽  
...  

Obesity is a major risk factor for many chronic diseases, including diabetes, fatty livers, and cancer. Expansion of the adipose mass has been shown to be related to adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs). However, the underlying mechanism of this effect has yet to be elucidated. We found that osteopontin (OPN) is downregulated in ASCs and adipose tissues of obese mice and overweight human beings because of methylation on its promoter, indicating that OPN may affect the development of obesity. Silencing of OPN in wild-type ASCs promotes adipogenic differentiation, while reexpression of OPN reduced adipogenic differentiation in OPN−/− ASCs. The role of extracellular OPN in ASC differentiation was further demonstrated by supplementation and neutralization of OPN. Additionally, OPN suppresses adipogenic differentiation in ASCs through the C/EBP pathways. Consistent with these in vitro results, by intravenous injection of OPN-expressing adenovirus to the mice, we found OPN can delay the development of obesity and improve insulin sensitivity. Therefore, our study demonstrates an important role of OPN in regulating the development of obesity, indicating OPN might be a novel target to attenuate obesity and its complications.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32481 ◽  
Author(s):  
Elisa Monaco ◽  
Massimo Bionaz ◽  
Sandra Rodriguez-Zas ◽  
Walter L. Hurley ◽  
Matthew B. Wheeler

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Monika Marędziak ◽  
Krzysztof Marycz ◽  
Krzysztof A. Tomaszewski ◽  
Katarzyna Kornicka ◽  
Brandon Michael Henry

Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n=7), (2) >50 years (n=7), (3) >60 years (n=7), and (4) >70 years (n=7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3039-3039
Author(s):  
Anthony Y. Tsai ◽  
Stephanie C. Filice ◽  
Elizabeth H. Javazon ◽  
Andrea T. Badillo ◽  
Alan W. Flake

Abstract Bone marrow derived mesenchymal stem cells (MSCs) have the capacity to differentiate into cells of the various mesodermal lineages. Efficiency of engraftment, however, remains a significant obstacle in MSC transplantation. P21 is a G1 checkpoint regulator and cyclin-dependent kinase inhibitor. In its absence, hematopoieitc stem cell (HSC) proliferation increases under normal homeostatic conditions. The aim of the study is to evaluate the effects of p21 deficiency on the proliferative capacity of MSCs. Therefore, MSCs from p21 KO and wildtype mice were maintained in culture in hypoxic and normoxic conditions. Cell counts and respective days in cultures were recorded from which population doubling (PD) times were calculated and compared. 1:1 Competition assays were performed between p21 KO MSCs transduced with DsRed and eGFP transduced WT MSCs as well as between DsRed transduced p21 KO MSCs and non-transduced WT MSCs. Osteogenic, chondrogenic, and adipogenic differentiation assays were performed on both cell populations using standard protocols. Sca-1, CD34, CD45, CD90, MHC Class I and II and other surface antigens were assessed using FACS analysis. In normoxic conditions, the p21 KO MSCs went through 25.68 population doublings in 60 days versus 25.43 population doublings in 103 days for the p21 WT MSCs. Under hypoxic conditions, the KO MSC population doubled 23.3 times in 58 days versus 14.78 times in 60 days for the WT MSCs. All population doubling times were taken from passage 10 cells. When the DsRed transduced KO MSCs (96.6-98.5% DsRed+) was placed in a 1:1 competition assay with eGFP transduced WT MSCs (99.3-99.9% eGFP+) or non-transduced WT MSCs (99.9–100% eGFP−), the normoxic results are as shown in Table 1. Similarly, the competition assay result between DsRed transduced KO MSCs (86.9–94.1% DsRed+) and eGFP transduced WT MSCs (99.7–100% eGFP+) or non-transduced WT MSCs (100% eGFP−) for the hypoxic condition are shown in Table 2. Both the p21 KO and wildtype MSCs populations were able to differentiate into ostenogenic, adipogenic, and chondrogenic lineages. No significant surface marker differences were observed between the 2 populations on FACS analysis. Our results clearly showed that p21 deficient MSCs have increased proliferative ability in vitro compared to normal MSCs. These findings have implications for expansion of MSC populations in vitro , and for the enhancement of competitive capacity of MSCs following in vivo administration. Table 1 - Normoxic Competition Assay KO MSC (DsRed) WT MSC (eGFP) KO MSC (DsRed) WT MSC (none) results analyzed by FACS Day 6 64.2±3.7% 34.5±4.3% 70.3±0.4% 19.7±0.6% Day 11 84.0±4.5% 13.6±4.6% 92.0±0.8% 6.4±0.7% Table 2 - Hypoxic Competition Assay KO MSC (DsRed) WT MSC (eGFP) KO MSC (DsRed) WT MSC (none) results analyzed by FACS Day 4 70.3±1.7% 30.0±1.7% 83.0±0.8% 18.6±0.9% Day 8 75.7±0.7% 25.8±0.7% 81.3±1.2% 20.6±1.2%


Author(s):  
Dana Foudah ◽  
Juliana Redondo ◽  
Cristina Caldara ◽  
Fabrizio Carini ◽  
Giovanni Tredici ◽  
...  

AbstractMesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Evelyn Lara ◽  
Alejandra Velásquez ◽  
Joel Cabezas ◽  
Nathaly Rivera ◽  
Paulina Pacha ◽  
...  

Mesenchymal stem cells (MSCs) were isolated and characterized from postpartum bovine endometrium of animals with subclinical (n=5) and clinical endometritis (n=3) and healthy puerperal females (n=5). Cells isolated displayed mean morphological features of MSCs and underwent osteogenic, chondrogenic, and adipogenic differentiation after induction (healthy and subclinical). Cells from cows with clinical endometritis did not undergo adipogenic differentiation. All cells expressed mRNAs for selected MSC markers. Endometrial MSCs were challenged in vitro with PGE2 at concentrations of 0, 1, 3, and 10 μM, and their global transcriptomic profile was studied. Overall, 1127 genes were differentially expressed between unchallenged cells and cells treated with PGE2 at all concentrations (763 up- and 364 downregulated, fold change > 2, and P<0.05). The pathways affected the most by the PGE2 challenge were immune response, angiogenesis, and cell proliferation. In conclusion, we demonstrated that healthy puerperal bovine endometrium contains MSCs and that endometritis modifies and limits some functional characteristics of these cells, such as their ability to proceed to adipogenic differentiation. Also, PGE2, an inflammatory mediator of endometritis, modifies the transcriptomic profile of endometrial MSCs. A similar situation may occur during inflammation associated with endometritis, therefore affecting the main properties of endometrial MSCs.


Sign in / Sign up

Export Citation Format

Share Document