scholarly journals Cell Surface Filaments of the Gliding Bacterium Flavobacterium johnsoniae Revealed by Cryo-Electron Tomography

2007 ◽  
Vol 189 (20) ◽  
pp. 7503-7506 ◽  
Author(s):  
Jun Liu ◽  
Mark J. McBride ◽  
Sriram Subramaniam

ABSTRACT Flavobacterium johnsoniae cells glide rapidly over surfaces by an as-yet-unknown mechanism. Using cryo-electron tomography, we show that wild-type cells display tufts of ∼5-nm-wide cell surface filaments that appear to be anchored to the inner surface of the outer membrane. These filaments are absent in cells of a nonmotile gldF mutant but are restored upon expression of plasmid-encoded GldF, a component of a putative ATP-binding cassette transporter.

2008 ◽  
Vol 190 (8) ◽  
pp. 2851-2857 ◽  
Author(s):  
Shawn S. Nelson ◽  
Sreelekha Bollampalli ◽  
Mark J. McBride

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces by an unknown mechanism. Transposon insertions in sprB resulted in cells that were defective in gliding. SprB is a highly repetitive 669-kDa cell surface protein, and antibodies against SprB inhibited the motility of wild-type cells. Polystyrene microspheres coated with antibodies against SprB attached to and were rapidly propelled along the cell surface, suggesting that SprB is one of the outermost components of the motility machinery. The movement of SprB along the cell surface supports a model of gliding motility in which motors anchored to the cell wall rapidly propel cell surface adhesins.


2009 ◽  
Vol 75 (21) ◽  
pp. 6864-6875 ◽  
Author(s):  
Mark J. McBride ◽  
Gary Xie ◽  
Eric C. Martens ◽  
Alla Lapidus ◽  
Bernard Henrissat ◽  
...  

ABSTRACT The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the “motor” and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.


2020 ◽  
Author(s):  
DG Gorasia ◽  
G Chreifi ◽  
CA Seers ◽  
CA Butler ◽  
JE Heath ◽  
...  

AbstractThe Bacteroidetes type IX secretion system (T9SS) consists of at least 19 components that translocate proteins with a type A or type B C-terminal domain (CTD) signal across the outer membrane. The overall organisation and architecture of this system including how the secretion pore (Sov) interacts with the other components is unknown. We used cryo-electron tomography to obtain the first images of the T9SS including PorK/N rings inside intact Porphyromonas gingivalis cells. Using proteomics, we identified a novel complex between Sov, PorV and PorA and showed that Sov interacts with the PorK/N rings via PorW and a new component PGN_1783. A separate complex comprising the outer membrane β-barrel protein PorP, PorE, and the type B CTD protein PG1035 was also identified. Similarly, the Flavobacterium johnsoniae PorP-like protein, SprF was found bound to the major gliding motility adhesin, SprB. Based on these data, we propose cell surface anchorage for type B CTD proteins to PorP-like proteins and a unique model where the PorK/N rings function as an outer membrane barrier to maintain the close proximity of the translocon to the shuttle and attachment complexes inside the rings, ensuring the harmonized secretion and cell surface attachment of the T9SS substrates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yunjie Chang ◽  
Ki Hwan Moon ◽  
Xiaowei Zhao ◽  
Steven J Norris ◽  
MD A Motaleb ◽  
...  

The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator–rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator–rotor interaction at an unprecedented detail. Importantly, the stator–rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Maia Azubel ◽  
Stephen D Carter ◽  
Jennifer Weiszmann ◽  
Jun Zhang ◽  
Grant J Jensen ◽  
...  

The fibroblast growth factor FGF21 was labeled with molecularly defined gold nanoparticles (AuNPs), applied to human adipocytes, and imaged by cryo-electron tomography (cryo-ET). Most AuNPs were in pairs about 80 Å apart, on the outer cell surface. Pairs of AuNPs were also abundant inside the cells in clathrin-coated vesicles and endosomes. AuNPs were present but no longer paired in multivesicular bodies. FGF21 could thus be tracked along the endocytotic pathway. The methods developed here to visualize signaling coupled to endocytosis can be applied to a wide variety of cargo and may be extended to studies of other intracellular transactions.


2020 ◽  
Vol 6 (10) ◽  
pp. eaay6616 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

The gliding bacterium Flavobacterium johnsoniae is known to have an adhesin, SprB, that moves along the cell surface on a spiral track. Following viscous shear, cells can be tethered by the addition of an anti-SprB antibody, causing spinning at 3 Hz. Labeling the type 9 secretion system (T9SS) with a YFP fusion of GldL showed a yellow fluorescent spot near the rotation axis, indicating that the motor driving the motion is associated with the T9SS. The distance between the rotation axis and the track (90 nm) was determined after adding a Cy3 label for SprB. A rotary motor spinning a pinion of radius 90 nm at 3 Hz would cause a spot on its periphery to move at 1.5 μm/s, the gliding speed. We suggest the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when this adhesin adheres to the solid substratum.


2012 ◽  
Vol 23 (16) ◽  
pp. 3143-3155 ◽  
Author(s):  
Thomas Heuser ◽  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Elizabeth F. Smith ◽  
Daniela Nicastro

Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ­ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.


Sign in / Sign up

Export Citation Format

Share Document