scholarly journals Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yikuan Li ◽  
Shishir Rao ◽  
Abdelaali Hassaine ◽  
Rema Ramakrishnan ◽  
Dexter Canoy ◽  
...  

AbstractOne major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural networks suffer from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher-level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for a more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and identifying misclassifications, with a comparable generalization performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.

Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Author(s):  
Jyotirmay Senapati ◽  
Abhijit Guha Roy ◽  
Sebastian Pölsterl ◽  
Daniel Gutmann ◽  
Sergios Gatidis ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Yang-Ming Lin ◽  
Ching-Tai Chen ◽  
Jia-Ming Chang

Abstract Background Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database search but is limited to peptides that have been previously identified. An accurate tandem mass spectrum prediction tool is thus crucial in expanding the peptide space and increasing the coverage of spectral library search. Results We propose MS2CNN, a non-linear regression model based on deep convolutional neural networks, a deep learning algorithm. The features for our model are amino acid composition, predicted secondary structure, and physical-chemical features such as isoelectric point, aromaticity, helicity, hydrophobicity, and basicity. MS2CNN was trained with five-fold cross validation on a three-way data split on the large-scale human HCD MS2 dataset of Orbitrap LC-MS/MS downloaded from the National Institute of Standards and Technology. It was then evaluated on a publicly available independent test dataset of human HeLa cell lysate from LC-MS experiments. On average, our model shows better cosine similarity and Pearson correlation coefficient (0.690 and 0.632) than MS2PIP (0.647 and 0.601) and is comparable with pDeep (0.692 and 0.642). Notably, for the more complex MS2 spectra of 3+ peptides, MS2PIP is significantly better than both MS2PIP and pDeep. Conclusions We showed that MS2CNN outperforms MS2PIP for 2+ and 3+ peptides and pDeep for 3+ peptides. This implies that MS2CNN, the proposed convolutional neural network model, generates highly accurate MS2 spectra for LC-MS/MS experiments using Orbitrap machines, which can be of great help in protein and peptide identifications. The results suggest that incorporating more data for deep learning model may improve performance.


2020 ◽  
Vol 60 (6) ◽  
pp. 2697-2717 ◽  
Author(s):  
Gabriele Scalia ◽  
Colin A. Grambow ◽  
Barbara Pernici ◽  
Yi-Pei Li ◽  
William H. Green

2021 ◽  
Author(s):  
Lahiru N. Wimalasena ◽  
Jonas F. Braun ◽  
Mohammad Reza Keshtkaran ◽  
David Hofmann ◽  
Juan Álvaro Gallego ◽  
...  

AbstractObjectiveTo study the neural control of movement, it is often necessary to estimate how muscles are activated across a variety of behavioral conditions. However, estimating the latent command signal that underlies muscle activation is challenging due to its complex relation with recorded electromyographic (EMG) signals. Common approaches estimate muscle activation independently for each channel or require manual tuning of model hyperparameters to optimally preserve behaviorally-relevant features.ApproachHere, we adapted AutoLFADS, a large-scale, unsupervised deep learning approach originally designed to de-noise cortical spiking data, to estimate muscle activation from multi-muscle EMG signals. AutoLFADS uses recurrent neural networks (RNNs) to model the spatial and temporal regularities that underlie multi-muscle activation.Main ResultsWe first tested AutoLFADS on muscle activity from the rat hindlimb during locomotion, and found that it dynamically adjusts its frequency response characteristics across different phases of behavior. The model produced single-trial estimates of muscle activation that improved prediction of joint kinematics as compared to low-pass or Bayesian filtering. We also tested the generality of the approach by applying AutoLFADS to monkey forearm muscle activity from an isometric task. AutoLFADS uncovered previously uncharacterized high-frequency oscillations in the EMG that enhanced the correlation with measured force compared to low-pass or Bayesian filtering. The AutoLFADS-inferred estimates of muscle activation were also more closely correlated with simultaneously-recorded motor cortical activity than other tested approaches.SignificanceUltimately, this method leverages both dynamical systems modeling and artificial neural networks to provide estimates of muscle activation for multiple muscles that can be used for further studies of multi-muscle coordination and its control by upstream brain areas.


2019 ◽  
Author(s):  
Ananya Bhattacharjee ◽  
Md. Shamsuzzoha Bayzid

AbstractBackgroundDue to the recent advances in sequencing technologies and species tree estimation methods capable of taking gene tree discordance into account, notable progress has been achieved in constructing large scale phylogenetic trees from genome wide data. However, substantial challenges remain in leveraging this huge amount of molecular data. One of the foremost among these challenges is the need for efficient tools that can handle missing data. Popular distance-based methods such as neighbor joining and UPGMA require that the input distance matrix does not contain any missing values.ResultsWe introduce two highly accurate machine learning based distance imputation techniques. One of our approaches is based on matrix factorization, and the other one is an autoencoder based deep learning technique. We evaluate these two techniques on a collection of simulated and biological datasets, and show that our techniques match or improve upon the best alternate techniques for distance imputation. Moreover, our proposed techniques can handle substantial amount of missing data, to the extent where the best alternate methods fail.ConclusionsThis study shows for the first time the power and feasibility of applying deep learning techniques for imputing distance matrices. The autoencoder based deep learning technique is highly accurate and scalable to large dataset. We have made these techniques freely available as a cross-platform software (available at https://github.com/Ananya-Bhattacharjee/ImputeDistances).


2020 ◽  
Vol 10 (14) ◽  
pp. 4913
Author(s):  
Tin Kramberger ◽  
Božidar Potočnik

Currently there is no publicly available adequate dataset that could be used for training Generative Adversarial Networks (GANs) on car images. All available car datasets differ in noise, pose, and zoom levels. Thus, the objective of this work was to create an improved car image dataset that would be better suited for GAN training. To improve the performance of the GAN, we coupled the LSUN and Stanford car datasets. A new merged dataset was then pruned in order to adjust zoom levels and reduce the noise of images. This process resulted in fewer images that could be used for training, with increased quality though. This pruned dataset was evaluated by training the StyleGAN with original settings. Pruning the combined LSUN and Stanford datasets resulted in 2,067,710 images of cars with less noise and more adjusted zoom levels. The training of the StyleGAN on the LSUN-Stanford car dataset proved to be superior to the training with just the LSUN dataset by 3.7% using the Fréchet Inception Distance (FID) as a metric. Results pointed out that the proposed LSUN-Stanford car dataset is more consistent and better suited for training GAN neural networks than other currently available large car datasets.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 705
Author(s):  
Po-Chou Shih ◽  
Chun-Chin Hsu ◽  
Fang-Chih Tien

Silicon wafer is the most crucial material in the semiconductor manufacturing industry. Owing to limited resources, the reclamation of monitor and dummy wafers for reuse can dramatically lower the cost, and become a competitive edge in this industry. However, defects such as void, scratches, particles, and contamination are found on the surfaces of the reclaimed wafers. Most of the reclaimed wafers with the asymmetric distribution of the defects, known as the “good (G)” reclaimed wafers, can be re-polished if their defects are not irreversible and if their thicknesses are sufficient for re-polishing. Currently, the “no good (NG)” reclaimed wafers must be first screened by experienced human inspectors to determine their re-usability through defect mapping. This screening task is tedious, time-consuming, and unreliable. This study presents a deep-learning-based reclaimed wafers defect classification approach. Three neural networks, multilayer perceptron (MLP), convolutional neural network (CNN) and Residual Network (ResNet), are adopted and compared for classification. These networks analyze the pattern of defect mapping and determine not only the reclaimed wafers are suitable for re-polishing but also where the defect categories belong. The open source TensorFlow library was used to train the MLP, CNN, and ResNet networks using collected wafer images as input data. Based on the experimental results, we found that the system applying CNN networks with a proper design of kernels and structures gave fast and superior performance in identifying defective wafers owing to its deep learning capability, and the ResNet averagely exhibited excellent accuracy, while the large-scale MLP networks also acquired good results with proper network structures.


Sign in / Sign up

Export Citation Format

Share Document