scholarly journals Investigating and correlating photoelectrochemical, photocatalytic, and antimicrobial properties of $$\hbox {TiO}_2$$ nanolayers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Volker Seiß ◽  
Uta Helbig ◽  
Ralf Lösel ◽  
Maik Eichelbaum

AbstractSemiconducting transition metal oxides such as $$\hbox {TiO}_2$$ TiO 2 are promising photo(electro)catalysts for solar water splitting and photoreduction of $$\hbox {CO}_2$$ CO 2 as well as for antibacterial, self-, water and air-cleaning coatings and admixtures in paints, building materials, on window glass or medical devices. In photoelectrocatalytic applications $$\hbox {TiO}_2$$ TiO 2 is usually used as photoanode only catalyzing the oxidation reaction. In coatings and admixtures $$\hbox {TiO}_2$$ TiO 2 works as heterogeneous catalyst and has to catalyze a complete redox cycle. While photoelectrochemical charge transport parameters are usually quite well accessible by electrochemical measurements, the quantitative description of photocatalytic properties is more challenging. Here, we present a systematic structural, photoelectrocatalytic, photocatalytic and antimicrobial study to understand if and how photoelectrochemical parameters can be used to predict the photocatalytic activity of $$\hbox {TiO}_2$$ TiO 2 . For this purpose $$\hbox {TiO}_2$$ TiO 2 thin films on flourine-doped tin oxide substrates were prepared and annealed at temperatures between 200 and 600 $$^{\circ }\hbox {C}$$ ∘ C . The film morphologies and thicknesses were studied by GIXRD, FESEM, and EDX. Photoelectrochemical properties were measured by linear sweep voltammetry, photoelectrochemical impedance spectroscopy, chopped light chronoamperometry, and intensity modulated photocurrent/ photovoltage spectroscopy. For comparison, photocatalytic rate constants were determined by methylene blue degradation and Escherichea coli inactivation and correlated with the deduced photoelectrocatalytic parameters. We found that the respective photoactivities of amorphous and crystalline $$\hbox {TiO}_2$$ TiO 2 nanolayers can be best correlated, if the extracted photoelectrochemical parameters such as charge transfer and recombination rates, charge transfer efficiencies and resistances are measured close to the open circuit potential (OCP). Hence, the interfacial charge transport parameters at the OCP can be indeed used as descriptors for predicting and understanding the photocatalytic activity of $$\hbox {TiO}_2$$ TiO 2 coatings.

2021 ◽  
Author(s):  
Volker Seiß ◽  
Uta Helbig ◽  
Ralf Lösel ◽  
Maik Eichelbaum

Abstract Semiconducting transition metal oxides such as TiO2 are promising photo(electro)catalysts for solar water splitting and photoreduction of CO2. Titania admixtures are also used in paints and building materials or as coating on window glass and medical devices, giving the modified materials antimicrobial, self-or even air-cleaning properties. Although TiO2 is an effective catalyst for all these applications, it is mechanistically important to distinguish between photoelectrocatalytic, photocatalytic and antimicrobial processes. In the former, TiO2 is usually electrically contacted as photoanode, i.e. only the oxidation reaction takes place at the titania surface. In the two latter applications, TiO2 works as heterogeneous catalyst and has to catalyze a complete redox cycle. The underlying common and diverging rate-determining photochemical and photoelectrochemical mechanisms are still not well understood. Here, we thus present a systematic structural, photoelectrocatalytic, photocatalytic and antimicrobial study to directly compare and correlate these properties. We prepared TiO2 thin films on flourine-doped tin oxide (FTO) substrates by a sol-gel spin-coating technique. The materials were annealed at temperatures between 200 and 600°C and their morphologies were studied by GIXRD, FESEM and EDX. Photoelectrochemical properties were measured by linear sweep voltammetry, photoelectrochemical impedance spectroscopy, chopped light chronoamperometry, and intensity modulated photocurrent/ photovoltage spectroscopy. For comparison, photocatalytic rate constants were determined by methylene blue and Escherichea coli degradation and correlated with the deduced photoelectrocatalytic parameters.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ciaran Lyons ◽  
Neelima Rathi ◽  
Pratibha Dev ◽  
Owen Byrne ◽  
Praveen K. Surolia ◽  
...  

A chromophore containing a coplanar dihexyl-substituted dithienosilole (CL1) synthesised for use in dye-sensitised solar cells displayed an energy conversion efficiency of 6.90% under AM 1.5 sunlight irradiation. The new sensitiser showed a similar fill factor and open-circuit voltage when compared with N719. Impedance measurements showed that, in the dark, the charge-transfer resistance of a cell using CL1 in the intermediate-frequency region was higher compared to N719 (69.8 versus 41.3 Ω). Under illumination at AM 1.5G-simulated conditions, the charge-transfer resistances were comparable, indicative of similar recombination rates by the oxidised form of the redox couple. The dye showed instability in ethanol solution, but excellent stability when attached to TiO2. Classical molecular dynamics indicated that interactions between ethanol and the dye are likely to reduce the stability of CL1 in solution form. Time-dependent density functional theory studies were performed to ascertain the absorption spectrum of the dye and assess the contribution of various transitions to optical excitation, which showed good agreement with experimental results.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Hak Hyeon Lee ◽  
Dong Su Kim ◽  
Ji Hoon Choi ◽  
Young Been Kim ◽  
Sung Hyeon Jung ◽  
...  

An effective strategy for improving the charge transport efficiency of p-type Cu2O photocathodes is the use of counter n-type semiconductors with a proper band alignment, preferably using Al-doped ZnO (AZO). Atomic layer deposition (ALD)-prepared AZO films show an increase in the built-in potential at the Cu2O/AZO interface as well as an excellent conformal coating with a thin thickness on irregular Cu2O. Considering the thin thickness of the AZO overlayers, it is expected that the composition of the Al and the layer stacking sequence in the ALD process will significantly influence the charge transport behavior and the photoelectrochemical (PEC) performance. We designed various stacking orders of AZO overlayers where the stacking layers consisted of Al2O3 (or Al) and ZnO using the atomically controlled ALD process. Al doping in ZnO results in a wide bandgap and does not degrade the absorption efficiency of Cu2O. The best PEC performance was obtained for the sample with an AZO overlayer containing conductive Al layers in the bottom and top regions. The Cu2O/AZO/TiO2/Pt photoelectrode with this overlayer exhibits an open circuit potential of 0.63 V and maintains a high cathodic photocurrent value of approximately −3.2 mA cm−2 at 0 VRHE for over 100 min.


2014 ◽  
Vol 92 ◽  
pp. 100-109 ◽  
Author(s):  
Jonjaua Ranogajec ◽  
Andrijana Sever-Skapin ◽  
Ognjen Rudic ◽  
Snezana Vucetic

The surfaces of building materials are constantly exposed to the actions of environmental factors, pollutants of inorganic and organic origin as well as to microorganisms, which significantly contribute to corrosion phenomena.The application of coatings decreases the negative action of the pollutants minimizing their direct contact with the substrate. Different types of coatings with additional functions have been developed. A specific problem of these applications is the lack of compatibility of the photocatalysts with the surface of the building materials and the detachment of potentially toxic TiO2nanoparticles. In the present study, this problem was solved by the proper immobilization of TiO2nanoparticles onto the photocatalyst support, layered double hydroxides (LDHs). The newly formed coating possesses acceptable porosity for a porous building material (porosity within the range of 30-46 %) and satisfied photocatalytic activity, as well as mineralogical compatibility with the substrates (mortars, renders, bricks). Additionally, a positive effect considering the self-cleaning phenomenon was attained.


2022 ◽  
Author(s):  
Hui Jiang ◽  
Jun Ye ◽  
Peng Hu ◽  
Shengli Zhu ◽  
Yanqin Liang ◽  
...  

Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b’]-dithiophene (DTTCNQ) single crystals as a template to...


2021 ◽  
Vol MA2021-01 (39) ◽  
pp. 1251-1251
Author(s):  
Gerko Oskam ◽  
Ingrid Rodriguez Gutierrez ◽  
Manuel Rodríguez Pérez ◽  
Alberto Vega Poot ◽  
Geonel Rodriguez Gattorno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document