scholarly journals Benefit of human moderate running boosting mood and executive function coinciding with bilateral prefrontal activation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chorphaka Damrongthai ◽  
Ryuta Kuwamizu ◽  
Kazuya Suwabe ◽  
Genta Ochi ◽  
Yudai Yamazaki ◽  
...  

AbstractRunning, compared to pedaling is a whole-body locomotive movement that may confer more mental health via strongly stimulating brains, although running impacts on mental health but their underlying brain mechanisms have yet to be determined; since almost the mechanistic studies have been done with pedaling. We thus aimed at determining the acute effect of a single bout of running at moderate-intensity, the most popular condition, on mood and executive function as well as their neural substrates in the prefrontal cortex (PFC). Twenty-six healthy participants completed both a 10-min running session on a treadmill at 50%$${\dot{\text{V}}\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak and a resting control session in randomized order. Executive function was assessed using the Stroop interference time from the color-word matching Stroop task (CWST) and mood was assessed using the Two-Dimensional Mood Scale, before and after both sessions. Prefrontal hemodynamic changes while performing the CWST were investigated using functional near-infrared spectroscopy. Running resulted in significant enhanced arousal and pleasure level compared to control. Running also caused significant greater reduction of Stroop interference time and increase in Oxy-Hb signals in bilateral PFCs. Besides, we found a significant association among pleasure level, Stroop interference reaction time, and the left dorsolateral PFCs: important brain loci for inhibitory control and mood regulation. To our knowledge, an acute moderate-intensity running has the beneficial of inducing a positive mood and enhancing executive function coinciding with cortical activation in the prefrontal subregions involved in inhibitory control and mood regulation. These results together with previous findings with pedaling imply the specificity of moderate running benefits promoting both cognition and pleasant mood.

2020 ◽  
Vol 34 (12) ◽  
pp. 1088-1098
Author(s):  
Paulo H. S. Pelicioni ◽  
Stephen R. Lord ◽  
Yoshiro Okubo ◽  
Daina L. Sturnieks ◽  
Jasmine C. Menant

Background People with Parkinson’s disease (PD) have difficulties generating quick and accurate steps in anticipation of and/or in response to environmental hazards. However, neural mechanisms underlying performance in cognitively demanding stepping tasks are unclear. Objective This study compared activation patterns in cognitive and motor cortical regions using functional near-infrared spectroscopy (fNIRS) between people with PD and age-matched healthy older adults (HOA) during stepping tasks. Methods Fifty-two people with PD and 95 HOA performed a simple choice stepping reaction time test (CSRT) and 2 cognitively demanding stepping tests (inhibitory CSRT [iCSRT] and Stroop stepping test [SST]) on a computerized step mat. Cortical activation in the dorsolateral prefrontal cortex (DLPFC), Broca’s area, supplementary motor area (SMA), and premotor cortex (PMC) were recorded using fNIRS. Stepping performance and cortical activity were contrasted between groups and between the CSRT and the iCSRT and SST. Results The PD group performed worse than the HOA in all 3 stepping tests. A consistent pattern of interactions indicated differential hemodynamic responses between the groups. Compared with the CSRT, the PD group exhibited reduced DLPFC activity in the iCSRT and reduced SMA and PMC activity in the SST. The HOA exhibited increased DLPFC, SMA, and PMC activity when performing the SST in comparison with the CSRT task. Conclusions In contrast to the HOA, the PD group demonstrated reduced cortical activity in the DLPFC, SMA, and PMC during the more complex stepping tasks requiring inhibitory control. This may reflect subcortical and/or multiple pathway damage with subsequent deficient use of cognitive and motor resources.


2019 ◽  
Vol 116 (37) ◽  
pp. 18347-18356 ◽  
Author(s):  
Sharon K. Sagiv ◽  
Jennifer L. Bruno ◽  
Joseph M. Baker ◽  
Vanessa Palzes ◽  
Katherine Kogut ◽  
...  

We have reported consistent associations of prenatal organophosphate pesticide (OP) exposure with poorer cognitive function and behavior problems in our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a birth cohort of Mexican American youth in California’s agricultural Salinas Valley. However, there is little evidence on how OPs affect neural dynamics underlying associations. We used functional near-infrared spectroscopy (fNIRS) to measure cortical activation during tasks of executive function, attention, social cognition, and language comprehension in 95 adolescent CHAMACOS participants. We estimated associations of residential proximity to OP use during pregnancy with cortical activation in frontal, temporal, and parietal regions using multiple regression models, adjusting for sociodemographic characteristics. OP exposure was associated with altered brain activation during tasks of executive function. For example, with a 10-fold increase in total OP pesticide use within 1 km of maternal residence during pregnancy, there was a bilateral decrease in brain activation in the prefrontal cortex during a cognitive flexibility task (β = −4.74; 95% CI: −8.18, −1.31 and β = −4.40; 95% CI: −7.96, −0.84 for the left and right hemispheres, respectively). We also found that prenatal OP exposure was associated with sex differences in brain activation during a language comprehension task. This first functional neuroimaging study of prenatal OP exposure suggests that pesticides may impact cortical brain activation, which could underlie previously reported OP-related associations with cognitive and behavioral function. Use of fNIRS in environmental epidemiology offers a practical alternative to neuroimaging technologies and enhances our efforts to assess the impact of chemical exposures on neurodevelopment.


2021 ◽  
Vol 11 (8) ◽  
pp. 991
Author(s):  
Christopher Copeland ◽  
Mukul Mukherjee ◽  
Yingying Wang ◽  
Kaitlin Fraser ◽  
Jorge M. Zuniga

This study aimed to examine the neural responses of children using prostheses and prosthetic simulators to better elucidate the emulation abilities of the simulators. We utilized functional near-infrared spectroscopy (fNIRS) to evaluate the neural response in five children with a congenital upper limb reduction (ULR) using a body-powered prosthesis to complete a 60 s gross motor dexterity task. The ULR group was matched with five typically developing children (TD) using their non-preferred hand and a prosthetic simulator on the same hand. The ULR group had lower activation within the primary motor cortex (M1) and supplementary motor area (SMA) compared to the TD group, but nonsignificant differences in the primary somatosensory area (S1). Compared to using their non-preferred hand, the TD group exhibited significantly higher action in S1 when using the simulator, but nonsignificant differences in M1 and SMA. The non-significant differences in S1 activation between groups and the increased activation evoked by the simulator’s use may suggest rapid changes in feedback prioritization during tool use. We suggest that prosthetic simulators may elicit increased reliance on proprioceptive and tactile feedback during motor tasks. This knowledge may help to develop future prosthesis rehabilitative training or the improvement of tool-based skills.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 792-793
Author(s):  
David Clark ◽  
Sudeshna Chatterjee ◽  
Jared Skinner ◽  
Paige Lysne ◽  
Samuel Wu ◽  
...  

Abstract This pilot study assessed a novel intervention to enhance both walking and executive function in older adults. The primary hypothesis was that eighteen sessions of frontal lobe tDCS combined with walking rehabilitation would be feasible, safe, and show preliminary efficacy. Eighteen participants were randomized to one of three intervention groups: active tDCS and rehabilitation with complex walking tasks (Active/Complex); sham tDCS and rehabilitation with complex walking tasks (Sham/Complex); or sham tDCS and rehabilitation with typical walking (Sham/Typical). Outcome measures included multiple tests of walking function, executive function, and prefrontal activity during walking as measured by functional near infrared spectroscopy (fNIRS). Of the three groups, the Active/Complex group demonstrated the broadest improvements across outcome measures including for prefrontal activity. The functional range of prefrontal activity in this group was increased considerably, as conceptualized by the Compensation Related Utilization of Neural Circuits Hypothesis. Frontal tDCS is a promising adjuvant to walking rehabilitation.


2021 ◽  
pp. 1-9
Author(s):  
Kyeong Joo Song ◽  
Min Ho Chun ◽  
Junekyung Lee ◽  
Changmin Lee

OBJECTIVE: To investigate the effects of the robot–assisted gait training on cortical activation and functional outcomes in stroke patients. METHODS: The patients were randomly assigned: training with Morning Walk® (Morning Walk group; n = 30); conventional physiotherapy (control group; n = 30). Rehabilitation was performed five times a week for 3 weeks. The primary outcome was the cortical activation in the Morning Walk group. The secondary outcomes included gait speed, 10-Meter Walk Test (10MWT), FAC, Motricity Index–Lower (MI–Lower), Modified Barthel Index (MBI), Rivermead Mobility Index (RMI), and Berg Balance Scale (BBS). RESULTS: Thirty-six subjects were analyzed, 18 in the Morning Walk group and 18 in the control group. The cortical activation was lower in affected hemisphere than unaffected hemisphere at the beginning of robot rehabilitation. After training, the affected hemisphere achieved a higher increase in cortical activation than the unaffected hemisphere. Consequently, the cortical activation in affected hemisphere was significantly higher than that in unaffected hemisphere (P = 0.036). FAC, MBI, BBS, and RMI scores significantly improved in both groups. The Morning Walk group had significantly greater improvements than the control group in 10MWT (P = 0.017), gait speed (P = 0.043), BBS (P = 0.010), and MI–Lower (P = 0.047) scores. CONCLUSION: Robot-assisted gait training not only improved functional outcomes but also increased cortical activation in stroke patients.


Sign in / Sign up

Export Citation Format

Share Document