scholarly journals Active strategies for multisensory conflict suppression in the virtual hand illusion

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Lanillos ◽  
Sae Franklin ◽  
Antonella Maselli ◽  
David W. Franklin

AbstractThe perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations. Here we describe a computational model, based on the free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We experimentally confirm those predictions in humans using a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual hand, regardless of its location with respect to the real arm, with little to no forces produced when the virtual hand overlaid their physical hand. The congruency of our model predictions and human observations indicates that the brain-body is generating actions to reduce the prediction error between the expected arm location and the new visual arm. This observed unconscious mechanism is an empirical validation of the perception–action duality in body adaptation to uncertain situations and evidence of the active component of predictive processing.

2020 ◽  
Author(s):  
Pablo Lanillos ◽  
Sae Franklin ◽  
David W. Franklin

AbstractThe perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations. Here we describe a computational model, based on the free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We experimentally confirm those predictions in humans by means of a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual hand, regardless of its location with respect to the real arm, with little to no forces produced when the virtual hand overlaid their physical hand. The congruency of our model predictions and human observations shows that the brain-body is generating actions to reduce the prediction error between the expected arm location and the new visual arm. This observed unconscious mechanism is an empirical validation of the perception-action duality in body adaptation to uncertain situations and evidence of the active component of predictive processing.Author SummaryHumans’ capacity to perceive and control their body in space is central in awareness, adaptation and safe interaction. From low-level body perception to body-ownership, discovering how the brain represents the body and generates actions is of major importance for cognitive science and also for robotics and artificial intelligence. The present study shows that humans move their body to match the expected location according to other (visual) sensory input, which corresponds to reducing the prediction error. This means that the brain adapts to conflicting or uncertain information from the senses by unconsciously acting in the world.


2019 ◽  
Vol 28 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Maxwell JD Ramstead ◽  
Michael D Kirchhoff ◽  
Karl J Friston

The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) – and its corollary, active inference – in theoretical neuroscience and biology: namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain – variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models: a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference – what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control – the self-organising, belief-guided selection of action policies – and do not have the properties ascribed by structural representationalists.


2019 ◽  
Author(s):  
Manuel Baltieri ◽  
Christopher Buckley

The free energy principle describes cognitive functions such as perception, action, learning and attention in terms of surprisal minimisation. Under simplifying assumptions, agents are depicted as systems minimising a weighted sum of prediction errors encoding the mismatch between incoming sensations and an agent's predictions about such sensations. The ``dark room'' is defined as a state that an agent would occupy should it only look to minimise this sum of prediction errors. This (paradoxical) state emerges as the contrast between the attempts to describe the richness of human and animal behaviour in terms of surprisal minimisation and the trivial solution of a dark room, where the complete lack of sensory stimuli would provide the easiest way to minimise prediction errors, i.e., to be in a perfectly predictable state of darkness with no incoming stimuli. Using a process theory derived from the free energy principle, active inference, we investigate with an agent-based model the meaning of the dark room problem and discuss some of its implications for natural and artificial systems. In this set up, we propose that the presence of this paradox is primarily due to the long-standing belief that agents should encode accurate world models, typical of traditional (computational) theories of cognition.


Synthese ◽  
2021 ◽  
Author(s):  
Matt Sims ◽  
Giovanni Pezzulo

AbstractPredictive processing theories are increasingly popular in philosophy of mind; such process theories often gain support from the Free Energy Principle (FEP)—a normative principle for adaptive self-organized systems. Yet there is a current and much discussed debate about conflicting philosophical interpretations of FEP, e.g., representational versus non-representational. Here we argue that these different interpretations depend on implicit assumptions about what qualifies (or fails to qualify) as representational. We deploy the Free Energy Principle (FEP) instrumentally to distinguish four main notions of representation, which focus on organizational, structural, content-related and functional aspects, respectively. The various ways that these different aspects matter in arriving at representational or non-representational interpretations of the Free Energy Principle are discussed. We also discuss how the Free Energy Principle may be seen as a unified view where terms that traditionally belong to different ontologies—e.g., notions of model and expectation versus notions of autopoiesis and synchronization—can be harmonized. However, rather than attempting to settle the representationalist versus non-representationalist debate and reveal something about what representations are simpliciter, this paper demonstrates how the Free Energy Principle may be used to reveal something about those partaking in the debate; namely, what our hidden assumptions about what representations are—assumptions that act as sometimes antithetical starting points in this persistent philosophical debate.


2013 ◽  
Vol 36 (3) ◽  
pp. 221-221 ◽  
Author(s):  
Lars Muckli ◽  
Lucy S. Petro ◽  
Fraser W. Smith

AbstractClark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models).


2020 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic model that attempts to unify theories of consciousness within the Free Energy Principle and Active Inference framework, with particular emphasis on Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further suggests predictive processing in sensory hierarchies may be well-modeled as (folded, sparse, partially disentangled) variational autoencoders, with beliefs discretely-updated via the formation of synchronous complexes—as self-organizing harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP) estimation via turbo coding. In this account, alpha-synchronized SOHMs across posterior cortices may constitute the kinds of maximal complexes described by IIT, as well as samples (or MAP estimates) from multimodal shared latent space, organized according to egocentric reference frames, entailing phenomenal consciousness as mid-level perceptual inference. When these posterior SOHMs couple with frontal complexes, this may enable various forms of conscious access as a kind of mental act(ive inference), affording higher order cognition/control, including the kinds of attentional/intentional processing and reportability described by GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be organized into spatiotemporal trajectories by the entorhinal/hippocampal system, so affording episodic memory, counterfactual imaginings, and planning.


2019 ◽  
Author(s):  
Cooper A. Smout ◽  
Matthew F. Tang ◽  
Marta I. Garrido ◽  
Jason B. Mattingley

AbstractThe human brain is thought to optimise the encoding of incoming sensory information through two principal mechanisms: prediction uses stored information to guide the interpretation of forthcoming sensory events, and attention prioritizes these events according to their behavioural relevance. Despite the ubiquitous contributions of attention and prediction to various aspects of perception and cognition, it remains unknown how they interact to modulate information processing in the brain. A recent extension of predictive coding theory suggests that attention optimises the expected precision of predictions by modulating the synaptic gain of prediction error units. Since prediction errors code for the difference between predictions and sensory signals, this model would suggest that attention increases the selectivity for mismatch information in the neural response to a surprising stimulus. Alternative predictive coding models proposes that attention increases the activity of prediction (or ‘representation’) neurons, and would therefore suggest that attention and prediction synergistically modulate selectivity for feature information in the brain. Here we applied multivariate forward encoding techniques to neural activity recorded via electroencephalography (EEG) as human observers performed a simple visual task, to test for the effect of attention on both mismatch and feature information in the neural response to surprising stimuli. Participants attended or ignored a periodic stream of gratings, the orientations of which could be either predictable, surprising, or unpredictable. We found that surprising stimuli evoked neural responses that were encoded according to the difference between predicted and observed stimulus features, and that attention facilitated the encoding of this type of information in the brain. These findings advance our understanding of how attention and prediction modulate information processing in the brain, and support the theory that attention optimises precision expectations during hierarchical inference by increasing the gain of prediction errors.


2020 ◽  
Author(s):  
Adam Safron

In introducing a model of “relaxed beliefs under psychedelics” (REBUS), Carhart-Harris and Friston (2019) have presented a compelling account of the effects of psychedelics on brain and mind. This model is contextualized within the Free Energy Principle (Friston et al., 2006; Friston, 2010), which may represent the first unified paradigm in the mind and life sciences. By this view, mental systems adaptively regulate their actions and interactions with the world via predictive models, whose dynamics are governed by a singular objective of minimizing prediction-error, or “free energy.” According to REBUS, psychedelics flatten the depth of free energy landscapes, or the differential attracting forces associated with various (Bayesian) beliefs, so promoting flexibility in inference and learning. Here, I would like to propose an alternative account of the effects of psychedelics that is in many ways compatible with REBUS, albeit with some important differences. Based on considerations of the distributions of 5-HT2a receptors within cortical laminae and canonical microcircuits for predictive coding, I propose that 5-HT2a agonism may also involve a strengthening of beliefs, particularly at intermediate levels of abstraction associated with conscious experience (Safron, 2020).


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 60
Author(s):  
Jonathan Mason

Over recent decades several mathematical theories of consciousness have been put forward including Karl Friston’s Free Energy Principle and Giulio Tononi’s Integrated Information Theory. In this article we further investigate theory based on Expected Float Entropy (EFE) minimisation which has been around since 2012. EFE involves a version of Shannon Entropy parameterised by relationships. It turns out that, for systems with bias due to learning, certain choices for the relationship parameters are isolated since giving much lower EFE values than others and, hence, the system defines relationships. It is proposed that, in the context of all these relationships, a brain state acquires meaning in the form of the relational content of the associated experience. EFE minimisation is itself an association learning process and its effectiveness as such is tested in this article. The theory and results are consistent with the proposition of there being a close connection between association learning processes and the emergence of consciousness. Such a theory may explain how the brain defines the content of consciousness up to relationship isomorphism.


Sign in / Sign up

Export Citation Format

Share Document