scholarly journals The predictive brain in action: Involuntary actions reduce body prediction errors

2020 ◽  
Author(s):  
Pablo Lanillos ◽  
Sae Franklin ◽  
David W. Franklin

AbstractThe perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations. Here we describe a computational model, based on the free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We experimentally confirm those predictions in humans by means of a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual hand, regardless of its location with respect to the real arm, with little to no forces produced when the virtual hand overlaid their physical hand. The congruency of our model predictions and human observations shows that the brain-body is generating actions to reduce the prediction error between the expected arm location and the new visual arm. This observed unconscious mechanism is an empirical validation of the perception-action duality in body adaptation to uncertain situations and evidence of the active component of predictive processing.Author SummaryHumans’ capacity to perceive and control their body in space is central in awareness, adaptation and safe interaction. From low-level body perception to body-ownership, discovering how the brain represents the body and generates actions is of major importance for cognitive science and also for robotics and artificial intelligence. The present study shows that humans move their body to match the expected location according to other (visual) sensory input, which corresponds to reducing the prediction error. This means that the brain adapts to conflicting or uncertain information from the senses by unconsciously acting in the world.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Lanillos ◽  
Sae Franklin ◽  
Antonella Maselli ◽  
David W. Franklin

AbstractThe perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations. Here we describe a computational model, based on the free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We experimentally confirm those predictions in humans using a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual hand, regardless of its location with respect to the real arm, with little to no forces produced when the virtual hand overlaid their physical hand. The congruency of our model predictions and human observations indicates that the brain-body is generating actions to reduce the prediction error between the expected arm location and the new visual arm. This observed unconscious mechanism is an empirical validation of the perception–action duality in body adaptation to uncertain situations and evidence of the active component of predictive processing.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Loreen Hertäg ◽  
Henning Sprekeler

Sensory systems constantly compare external sensory information with internally generated predictions. While neural hallmarks of prediction errors have been found throughout the brain, the circuit-level mechanisms that underlie their computation are still largely unknown. Here, we show that a well-orchestrated interplay of three interneuron types shapes the development and refinement of negative prediction-error neurons in a computational model of mouse primary visual cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent inhibitory plasticity can generate different variants of prediction-error circuits, which can be distinguished by simulated optogenetic experiments. The experience-dependence of the model circuit is consistent with that of negative prediction-error circuits in layer 2/3 of mouse primary visual cortex. Our model makes a range of testable predictions that may shed light on the circuitry underlying the neural computation of prediction errors.


Author(s):  
Loreen Hertäg ◽  
Henning Sprekeler

AbstractSensory systems constantly compare external sensory information with internally generated predictions. While neural hallmarks of prediction errors have been found throughout the brain, the circuit-level mechanisms that underlie their computation are still largely unknown. Here, we show that a well-orchestrated interplay of three interneuron types shapes the development and refinement of negative prediction-error neurons in a computational model of mouse primary visual cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent inhibitory plasticity can generate different variants of prediction-error circuits, which can be distinguished by simulated optogenetic experiments. The experience-dependence of the model circuit is consistent with that of negative prediction-error circuits in layer 2/3 of mouse primary visual cortex. Our model makes a range of testable predictions that may shed light on the circuitry underlying the neural computation of prediction errors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elmarie Venter

In this paper, I argue for an embodied, embedded approach to predictive processing and thus align the framework with situated cognition. The recent popularity of theories conceiving of the brain as a predictive organ has given rise to two broad camps in the literature that I call free energy enactivism and cognitivist predictive processing. The two approaches vary in scope and methodology. The scope of cognitivist predictive processing is narrow and restricts cognition to brain processes and structures; it does not consider the body-beyond-brain and the environment as constituents of cognitive processes. Free energy enactivism, on the other hand, includes all self-organizing systems that minimize free energy (including non-living systems) and thus does not offer any unique explanations for more complex cognitive phenomena that are unique to human cognition. Furthermore, because of its strong commitment to the mind-life continuity thesis, it does not provide an explanation of what distinguishes more sophisticated cognitive systems from simple systems. The account that I develop in this paper rejects both of these radical extremes. Instead, I propose a compromise that highlights the necessary components of predictive processing by making use of a mechanistic methodology of explanation. The starting point of the argument in this paper is that despite the interchangeable use of the terms, prediction error minimization and the free energy principle are not identical. But this distinction does not need to disrupt the status quo of the literature if we consider an alternative approach: Embodied, Embedded Predictive Processing (EEPP). EEPP accommodates the free energy principle, as argued for by free energy enactivism, but it also allows for mental representations in its explanation of cognition. Furthermore, EEPP explains how prediction error minimization is realized but, unlike cognitivist PP, it allocates a constitutive role to the body in cognition. Despite highlighting concerns regarding cognitivist PP, I do not wish to discredit the role of the neural domain or representations as free energy enactivism does. Neural structures and processes undeniably contribute to the minimization of prediction error but the role of the body is equally important. On my account, prediction error minimization and free energy minimization are deeply dependent on the body of an agent, such that the body-beyond-brain plays a constitutive role in cognitive processing. I suggest that the body plays three constitutive roles in prediction error minimization: The body regulates cognitive activity, ensuring that cognition and action are intricately linked. The body acts as distributor in the sense that it carries some of the cognitive load by fulfilling the function of minimizing prediction error. Finally, the body serves to constrain the information that is processed by an agent. In fulfilling these three roles, the agent and environment enter into a bidirectional relation through influencing and modeling the structure of the other. This connects EEPP to the free energy principle because the whole embodied agent minimizes free energy in virtue of being a model of its econiche. This grants the body a constitutive role as part of the collection of mechanisms that minimize prediction error and free energy. The body can only fulfill its role when embedded in an environment, of which it is a model. In this sense, EEPP offers the most promising alternative to cognitivist predictive processing and free energy enactivism.


2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


Author(s):  
Michiel Van Elk ◽  
Harold Bekkering

We characterize theories of conceptual representation as embodied, disembodied, or hybrid according to their stance on a number of different dimensions: the nature of concepts, the relation between language and concepts, the function of concepts, the acquisition of concepts, the representation of concepts, and the role of context. We propose to extend an embodied view of concepts, by taking into account the importance of multimodal associations and predictive processing. We argue that concepts are dynamically acquired and updated, based on recurrent processing of prediction error signals in a hierarchically structured network. Concepts are thus used as prior models to generate multimodal expectations, thereby reducing surprise and enabling greater precision in the perception of exemplars. This view places embodied theories of concepts in a novel predictive processing framework, by highlighting the importance of concepts for prediction, learning and shaping categories on the basis of prediction errors.


Author(s):  
A. Greenhouse-Tucknott ◽  
J. B. Butterworth ◽  
J. G. Wrightson ◽  
N. J. Smeeton ◽  
H. D. Critchley ◽  
...  

AbstractFatigue is a common experience in both health and disease. Yet, pathological (i.e., prolonged or chronic) and transient (i.e., exertional) fatigue symptoms are traditionally considered distinct, compounding a separation between interested research fields within the study of fatigue. Within the clinical neurosciences, nascent frameworks position pathological fatigue as a product of inference derived through hierarchical predictive processing. The metacognitive theory of dyshomeostasis (Stephan et al., 2016) states that pathological fatigue emerges from the metacognitive mechanism in which the detection of persistent mismatches between prior interoceptive predictions and ascending sensory evidence (i.e., prediction error) signals low evidence for internal generative models, which undermine an agent’s feeling of mastery over the body and is thus experienced phenomenologically as fatigue. Although acute, transient subjective symptoms of exertional fatigue have also been associated with increasing interoceptive prediction error, the dynamic computations that underlie its development have not been clearly defined. Here, drawing on the metacognitive theory of dyshomeostasis, we extend this account to offer an explicit description of the development of fatigue during extended periods of (physical) exertion. Accordingly, it is proposed that a loss of certainty or confidence in control predictions in response to persistent detection of prediction error features as a common foundation for the conscious experience of both pathological and nonpathological fatigue.


2020 ◽  
Author(s):  
Dongjae Kim ◽  
Jaeseung Jeong ◽  
Sang Wan Lee

AbstractThe goal of learning is to maximize future rewards by minimizing prediction errors. Evidence have shown that the brain achieves this by combining model-based and model-free learning. However, the prediction error minimization is challenged by a bias-variance tradeoff, which imposes constraints on each strategy’s performance. We provide new theoretical insight into how this tradeoff can be resolved through the adaptive control of model-based and model-free learning. The theory predicts the baseline correction for prediction error reduces the lower bound of the bias–variance error by factoring out irreducible noise. Using a Markov decision task with context changes, we showed behavioral evidence of adaptive control. Model-based behavioral analyses show that the prediction error baseline signals context changes to improve adaptability. Critically, the neural results support this view, demonstrating multiplexed representations of prediction error baseline within the ventrolateral and ventromedial prefrontal cortex, key brain regions known to guide model-based and model-free learning.One sentence summaryA theoretical, behavioral, computational, and neural account of how the brain resolves the bias-variance tradeoff during reinforcement learning is described.


2019 ◽  
Author(s):  
J. Haarsma ◽  
P.C. Fletcher ◽  
J.D. Griffin ◽  
H.J. Taverne ◽  
H. Ziauddeen ◽  
...  

AbstractRecent theories of cortical function construe the brain as performing hierarchical Bayesian inference. According to these theories, the precision of cortical unsigned prediction error (i.e., surprise) signals plays a key role in learning and decision-making, to be controlled by dopamine, and to contribute to the pathogenesis of psychosis. To test these hypotheses, we studied learning with variable outcome-precision in healthy individuals after dopaminergic modulation and in patients with early psychosis. Behavioural computational modelling indicated that precision-weighting of unsigned prediction errors benefits learning in health, and is impaired in psychosis. FMRI revealed coding of unsigned prediction errors relative to their precision in bilateral superior frontal gyri and dorsal anterior cingulate, which was perturbed by dopaminergic modulation, impaired in psychosis, and associated with task performance and schizotypy. We conclude that precision-weighting of cortical prediction error signals is a key mechanism through which dopamine modulates inference and contributes to the pathogenesis of psychosis.


2017 ◽  
Author(s):  
Olivia K Faull ◽  
Anja Hayen ◽  
Kyle T S Pattinson

AbstractBreathlessness debilitates millions of people with chronic illness. Mismatch between breathlessness severity and objective disease markers is common and poorly understood. Traditionally, sensory perception was conceptualised as a stimulus-response relationship, although this cannot explain how conditioned symptoms may occur in the absence of physiological signals from the lungs or airways. A Bayesian model is now proposed in which the brain generates sensations based on expectations learned from past experiences (priors), which are then checked against incoming afferent signals. In this model, psychological factors may act as moderators. They may either alter priors, or change the relative attention towards incoming sensory information, leading to more variable interpretation of an equivalent afferent input.In the present study we conducted a preliminary test of this model in a supplementary analysis of previously published data (Hayen 2017). We hypothesised that individual differences in psychological traits (anxiety, depression, anxiety sensitivity) would correlate with the variability of subjective evaluation of equivalent breathlessness challenges. To better understand the resulting inferential leap in the brain, we explored whether these behavioural measures correlated with activity in areas governing either prior generation or sensory afferent input.Behaviorally, anxiety sensitivity was found to positively correlate with each subject’s variability of intensity and unpleasantness during mild breathlessness, and with unpleasantness during strong breathlessness. In the brain, anxiety sensitivity was found to positively correlate with activity in the anterior insula during mild breathlessness, and negatively correlate with parietal sensorimotor areas during strong breathlessness.Our findings suggest that anxiety sensitivity may reduce the robustness of this Bayesian sensory perception system, increasing the variability of breathlessness perception and possibly susceptibility to symptom misinterpretation. These preliminary findings in healthy individuals demonstrate how differences in psychological function influence the way we experience bodily sensations, which might direct us towards better understanding of symptom mismatch in clinical populations.


Sign in / Sign up

Export Citation Format

Share Document