scholarly journals Spatiotemporal variations of agricultural water footprint and its economic benefits in Xinjiang, northwestern China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinbo Li ◽  
Mingjiang Deng

AbstractAgriculture is the largest water user and is the main driving force behind water stress in Xinjiang, northwestern China. In this study, the water footprint (WF) (blue, green and gray WF) of main crop production and their temporal and spatial characteristics in Xinjiang were estimated in 2006, 2010, 2014 and 2018. The blue water footprint deficit (BWFd) was conducted and food productivity and economic benefits of WF were also analyzed via the water consumption per output value (food productivity and economic benefits). The results reveal that the WF increased from 22.75 to 44.16 billion m3 during 2006–2018 in Xinjiang, of which cotton, corn and wheat are main contributors of WF. In terms of different regions, corn has the largest WF in north Xinjiang and cotton has the largest WF in south and east Xinjiang. The BWFd broadened from − 11.51 to + 13.26 billion m3 in Xinjiang with the largest increased BWFd in Kashgar (from − 3.35 to 1.40 billion m3) and Aksu (from − 2.92 to 2.23 billion m3) of south Xinjiang and in Shihezi (from − 0.11 to 2.90 billion m3) of north Xinjiang. In addition, the water footprint food productivity does not well correspond with the water footprint economic benefits in prefectures of Xinjiang. It means we should consider the food yields priority and economic benefits priority to formulate a scientific and effective supervisor mode to realize the sustainable management of agricultural water in prefectures of Xinjiang.

2019 ◽  
Vol 11 (20) ◽  
pp. 5567 ◽  
Author(s):  
Ge Song ◽  
Chao Dai ◽  
Qian Tan ◽  
Shan Zhang

The grey water footprint theory was introduced into a fractional programming model to alleviate non-point source pollution and increase water-use efficiency through the adjustment of crop planting structure. The interval programming method was also incorporated within the developed framework to handle parametric uncertainties. The objective function of the model was the ratio of economic benefits to grey water footprints from crop production, and the constraints contained water availability constraints, food security constraints, planting area constraints, grey water footprint constraints and non-negative constraints. The model was applied to the Hetao Irrigation District of China. It was found that, based on the data in the year of 2016, the optimal planting plans generated from the developed model would reduce 34,400 m3 of grey water footprints for every 100 million Yuan gained from crops. Under the optimal planting structure, the total grey water footprints would be reduced by 21.9 million m3, the total economic benefits from crops would be increased by 1.138 billion Yuan, and the irrigation water would be saved by 44 million m3. The optimal results could provide decision-makers with agricultural water use plans with reduced negative impacts on the environment and enhanced economic benefits from crops.


2014 ◽  
Vol 153 (5) ◽  
pp. 767-778 ◽  
Author(s):  
S. K. SUN ◽  
P. T. WU ◽  
Y. B. WANG ◽  
X. N. ZHAO

SUMMARYWater scarcity is a major constraint of agricultural production in arid and semi-arid areas. In the face of future water scarcity, one possible way the agricultural sector could be adapted is to change cropping patterns and make adjustments for available water resources for irrigation. The present paper analyses the temporal evolution of cropping pattern from 1960 to 2008 in the Hetao Irrigation District (HID), China. The impact of changing cropping patterns on regional agricultural water productivity is evaluated from the water footprint (WF) perspective. Results show that the area under cash crops (e.g. sunflower and melon) has risen phenomenally over the study period because of increased economic returns pursued by farmers. Most of these cash crops have a smaller WF (high water productivity) than grain crops in HID. With the increase of area sown to cash crops, water productivity in HID increased substantially. Changing the cropping pattern has significant effects on regional crop water productivity: in this way, HID has increased the total crop production without increasing significantly the regional water consumption. The results of this case study indicate that regional agricultural water can be used effectively by properly planning crop areas and patterns under irrigation water limitations. However, there is a need to foster a cropping pattern that is multifunctional and sustainable, which can guarantee food security, enhance natural resource use and provide stable and high returns to farmers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Huang ◽  
Mengqi Wang ◽  
Zhongren Zhou ◽  
Yajuan Yu ◽  
Yixing Bi

Beijing, the capital of China, is experiencing a serious lack of water, which is becoming a main factor in the restriction of the development of the social economy. Due to the low economic efficiency and high consumption proportion of agricultural water use, the relationship between economic growth and agricultural water use is worth investigating. The “decoupling” index is becoming increasingly popular for identifying the degree of non-synchronous variation between resource consumption and economic growth. However, few studies address the decoupling between the crop water consumption and agricultural economic growth. This paper involves the water footprint (WF) to assess the water consumption in the crop production process. After an evaluation of the crop WF in Beijing, this paper applies the decoupling indicators to examine the occurrence of non-synchronous variation between the agricultural gross domestic product (GDP) and crop WF in Beijing from 1981 to 2013. The results show that the WF of crop production in 2013 reduced by 62.1% compared to that in 1980 — in total, 1.81 × 109 m3. According to the decoupling states, the entire study period is divided into three periods. From 1981 to 2013, the decoupling states represented seventy-five percent of the years from 1981 to 1992 (Period I) with a moderate decoupling degree, more than ninety percent from 1993 to 2003 (Period II) with a very strong decoupling degree and moved from non-decoupling to strong decoupling from 2004 to 2013 (Period III). Adjusting plantation structure, technology innovation and raising awareness of water-saving, may promote the decoupling degree between WF and agricultural GDP in Beijing.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 696
Author(s):  
Aihua Long ◽  
Jiawen Yu ◽  
Xiaoya Deng ◽  
Xinlin He ◽  
Haifeng Gao ◽  
...  

The Tarim River Basin in China has predominantly assumed the task of commodity cotton and other high water-intensive crop production in recent years. The spatial matching status of agricultural water and land resources is a prerequisite for local economic development. This paper provides an insight into the spatiotemporal variation trends of agricultural production water footprint and oasis farmland in the Tarim River Basin. The degree of spatial mismatching between oasis farmland and crop production water footprints studied in this paper found how the crop water footprint affected the change in oasis farmland area by sensitivity analysis. Time series data covering the period of 1990–2015 were used for the study. The results showed that the annual variation of crop production water footprint and oasis farmland area have experienced upward trends in Tarim River Basin. The blue water makes the largest contribution to the components of the crop production water footprint in each district (all exceeded 77%). The crop production water footprint and oasis farmland area tend to aggregate towards the eastern region. The level of spatial mismatch between the blue water footprint and farmland area fluctuated during the study period, but it was gradually remedied after 2000, while the spatial mismatch between green water footprint and farmland area gradually worsened. The number of districts with mid and high sensitivity to changes in blue water footprint continuously increased during 1990–2005, which revealed that the change in blue water footprint has an increasing influence on oasis farmland. The results can provide operable recommendations for efficient use of water resources, maintaining oasis suitable farmland scale and agricultural sustainable development in the Tarim River Basin.


2019 ◽  
Vol 17 ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2014 ◽  
Vol 14 (6) ◽  
pp. 1067-1075 ◽  
Author(s):  
Peili Duan ◽  
Lijie Qin

Quantitation of the green, blue and grey water footprints (WFs) of crop production can distinguish the water types and amount in crop production, as well as the degree of freshwater pollution. This paper calculates the WF of maize production and assesses the temporal variability and spatial distribution of WFs in different types of rainfall years over Jilin Province from 1998 to 2012. The results indicated that: (1) the annual average WF of maize production was 1,067 m3/ton, which was 53% green, 24% blue and 23% grey (maize production in Jilin Province relies primarily on green water); (2) the drier the year, the higher the WF of maize production; (3) the highest WF of maize production values among 49 counties in the province were in Antu and Tumen counties, whereas the lowest values occurred in Gongzhuling and Lishu counties, whether the year was humid, average or dry; and (4) the WF of maize production was highest in the eastern region, moderate in the western region and lowest in the middle region.


2019 ◽  
Vol 17 (10) ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2020 ◽  
Author(s):  
Xi Yang ◽  
La Zhuo ◽  
Pengxuan Xie ◽  
Hongrong Huang ◽  
Bianbian Feng ◽  
...  

Abstract. A core goal of sustainable agricultural water resources management is to implement lower water footprint (WF), i.e., higher water productivity, while maximising economic benefits in crop production. However, previous studies mostly focused on crop water productivity from a single physical perspective. Little attention is paid to synergies and trade-offs between water consumption and economic value creation of crop production. Distinguishing between blue and green water composition, grain and cash crops, and irrigation and rainfed production mode in China, this study calculates the production-based WF (PWF) and derives the economic value-based WF (EWF) of 14 major crops in 31 provinces for each year over 2001–2016. The synergy evaluation index (SI) of PWF and EWF is proposed to evaluate quantitatively the synergies and trade-offs between the two. Results show that both the PWF and EWF of most considered crops in China decreased with the increase of crop yield and prices. The high (low) values of both PWF and EWF of grain crop tended to obvious cluster in space and there existed a huge difference between blue and green water in economic value creation. Moreover, the SI revealed a serious incongruity between PWFs and EWFs both in grain and cash crops. Negative SI values occurred mostly in northwest China for grain crops, and overall more often and with lower values for cash crops. Unreasonable regional planting structure and crop prices resulted in this incongruity, suggesting the need to promote regional coordinated development to adjust the planting structure according to local conditions and to regulate crop prices rationally.


Sign in / Sign up

Export Citation Format

Share Document