scholarly journals Increased resting state connectivity in the anterior default mode network of idiopathic epileptic dogs

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katrin M. Beckmann ◽  
Adriano Wang-Leandro ◽  
Henning Richter ◽  
Rima N. Bektas ◽  
Frank Steffen ◽  
...  

AbstractEpilepsy is one of the most common chronic, neurological diseases in humans and dogs and considered to be a network disease. In human epilepsy altered functional connectivity in different large-scale networks have been identified with functional resting state magnetic resonance imaging. Since large-scale resting state networks have been consistently identified in anesthetised dogs’ application of this technique became promising in canine epilepsy research. The aim of the present study was to investigate differences in large-scale resting state networks in epileptic dogs compared to healthy controls. Our hypothesis was, that large-scale networks differ between epileptic dogs and healthy control dogs. A group of 17 dogs (Border Collies and Greater Swiss Mountain Dogs) with idiopathic epilepsy was compared to 20 healthy control dogs under a standardized sevoflurane anaesthesia protocol. Group level independent component analysis with dimensionality of 20 components, dual regression and two-sample t test were performed and revealed significantly increased functional connectivity in the anterior default mode network of idiopathic epileptic dogs compared to healthy control dogs (p = 0.00060). This group level differences between epileptic dogs and healthy control dogs identified using a rather simple data driven approach could serve as a starting point for more advanced resting state network analysis in epileptic dogs.

2016 ◽  
Author(s):  
Wilma Matthysen ◽  
Daniele Marinazzo ◽  
Roma Siugzdaite

Background. Autism spectrum disorder is a neurodevelopmental disorder, marked by impairment in social communication and restricted, repetitive patterns of behavior, interests, or activities. Accumulating data suggests that alterations in functional connectivity might contribute to these deficits. Whereas functional connectivity in resting state fMRI is expressed by several resting-state networks, for this study we examined several of them, but our particular interest was in the default mode network (DMN), given its age dependent alteration of functional connectivity and its relation to social communication. Methods. Since the studies investigating young children (6-8 years) with autism have found hypo-connectivity in DMN and studies on adolescents (12-16 years old) with autism have found hyper-connectivity in the DMN, we were interested in connectivity pattern during the age of 8 to 12, so we investigated the role of altered intrinsic connectivity in 16 children (mean age 9.75 ±1.6 years) with autism spectrum disorder compared to 16 typically developing controls in the DMN and other resting-state networks. Results. Results show that, compared to controls, the group with autism spectrum disorder showed signs of both hypo- and hyper-connectivity in different regions of the resting-state networks related to social communication. Conclusion. That suggests that transition period from childhood to adolescence carries the complexity of functional connectivity from both age groups. Regions that showed differences in functional connectivity were discussed in relation to social communication difficulties.


2012 ◽  
Vol 24 (11) ◽  
pp. 2186-2198 ◽  
Author(s):  
Keiichi Onoda ◽  
Masaki Ishihara ◽  
Shuhei Yamaguchi

Aging is related to cognitive decline, and it has been reported that aging disrupts some resting state brain networks. However, most studies have focused on the default mode network and ignored other resting state networks. In this study, we measured resting state activity using fMRI and explored whether cognitive decline with aging is related to disrupted resting state networks. Independent component analysis was used to evaluate functional connectivity. Notably, the connectivity within the salience network that consisted of the bilateral insula and the anterior cingulated cortex decreased with aging; the impairment of functional connectivity was correlated with measured decreases in individual cognitive abilities. Furthermore, certain internetwork connectivities (salience to auditory, default mode to visual, etc.) also decreased with aging. These results suggest that (1) aging affects not only the default mode network but also other networks, specifically the salience network; (2) aging affects internetwork connectivity; and (3) disruption of the salience network is related to cognitive decline in elderly people.


2016 ◽  
Author(s):  
Wilma Matthysen ◽  
Daniele Marinazzo ◽  
Roma Siugzdaite

Background. Autism spectrum disorder is a neurodevelopmental disorder, marked by impairment in social communication and restricted, repetitive patterns of behavior, interests, or activities. Accumulating data suggests that alterations in functional connectivity might contribute to these deficits. Whereas functional connectivity in resting state fMRI is expressed by several resting-state networks, for this study we examined several of them, but our particular interest was in the default mode network (DMN), given its age dependent alteration of functional connectivity and its relation to social communication. Methods. Since the studies investigating young children (6-8 years) with autism have found hypo-connectivity in DMN and studies on adolescents (12-16 years old) with autism have found hyper-connectivity in the DMN, we were interested in connectivity pattern during the age of 8 to 12, so we investigated the role of altered intrinsic connectivity in 16 children (mean age 9.75 ±1.6 years) with autism spectrum disorder compared to 16 typically developing controls in the DMN and other resting-state networks. Results. Results show that, compared to controls, the group with autism spectrum disorder showed signs of both hypo- and hyper-connectivity in different regions of the resting-state networks related to social communication. Conclusion. That suggests that transition period from childhood to adolescence carries the complexity of functional connectivity from both age groups. Regions that showed differences in functional connectivity were discussed in relation to social communication difficulties.


Author(s):  
ST Lang ◽  
B Goodyear ◽  
J Kelly ◽  
P Federico

Background: Resting state functional MRI (rs-fMRI) provides many advantages to task-based fMRI in neurosurgical populations, foremost of which is the lack of the need to perform a task. Many networks can be identified by rs-fMRI in a single period of scanning. Despite the advantages, there is a paucity of literature on rs-fMRI in neurosurgical populations. Methods: Eight patients with tumours near areas traditionally considered as eloquent cortex participated in a five minute rs-fMRI scan. Resting-state fMRI data underwent Independent Component Analysis (ICA) using the Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) toolbox in FSL. Resting state networks (RSNs) were identified on a visual basis. Results: Several RSNs, including language (N=7), sensorimotor (N=7), visual (N=7), default mode network (N=8) and frontoparietal attentional control (n=7) networks were readily identifiable using ICA of rs-fMRI data. Conclusion: These pilot data suggest that ICA applied to rs-fMRI data can be used to identify motor and language networks in patients with brain tumours. We have also shown that RSNs associated with cognitive functioning, including the default mode network and the frontoparietal attentional control network can be identified in individual subjects with brain tumours. While preliminary, this suggests that rs-fMRI may be used pre-operatively to localize areas of cortex important for higher order cognitive functioning.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Charles A. Ellis ◽  
Zhijia Liang ◽  
Zening Fu ◽  
...  

Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized.Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects.Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity.Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.


2021 ◽  
Author(s):  
Kaley Davis ◽  
Emily Hirsch ◽  
Dylan Gee ◽  
Margaret Andover ◽  
Amy Krain Roy

Abstract Humans are reliant on their caregivers for an extended period of time, offering numerous opportunities for environmental factors, such as parental attitudes and behaviors, to impact brain development. The default mode network is a neural system encompassing the medial prefrontal cortex, posterior cingulate cortex, precuneus, and temporo-parietal junction, which is implicated in aspects of cognition and psychopathology. Delayed default mode network maturation in children and adolescents has been associated with greater general dimensional psychopathology, and positive parenting behaviors have been suggested to serve as protective mechanisms against atypical default mode network development. The current study aimed to extend the existing research by examining whether within- default mode network resting-state functional connectivity would mediate the relation between parental acceptance/warmth and youth psychopathology. Data from the Adolescent Brain and Cognitive Development study, which included a community sample of 9,058 children ages 9-10.9 years, were analyzed to test this prediction. Results from the analysis demonstrated a significant mediation, where greater parental acceptance/warmth predicted greater within- default mode network resting-state functional connectivity, which in turn predicted lower psychopathology. Our study provides preliminary support for the notion that positive parenting traits may reduce the risk for psychopathology in youth through their influence on the default mode network. Due to the cross-sectional nature of this study, we can only draw correlational inference; therefore, these relationships should be tested longitudinally in future investigations.


Sign in / Sign up

Export Citation Format

Share Document