scholarly journals Panoramic tongue imaging and deep convolutional machine learning model for diabetes diagnosis in humans

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Saritha Balasubramaniyan ◽  
Vijay Jeyakumar ◽  
Deepa Subramaniam Nachimuthu

AbstractDiabetes is a serious metabolic disorder with high rate of prevalence worldwide; the disease has the characteristics of improper secretion of insulin in pancreas that results in high glucose level in blood. The disease is also associated with other complications such as cardiovascular disease, retinopathy, neuropathy and nephropathy. The development of computer aided decision support system is inevitable field of research for disease diagnosis that will assist clinicians for the early prognosis of diabetes and to facilitate necessary treatment at the earliest. In this research study, a Traditional Chinese Medicine based diabetes diagnosis is presented based on analyzing the extracted features of panoramic tongue images such as color, texture, shape, tooth markings and fur. The feature extraction is done by Convolutional Neural Network (CNN)—ResNet 50 architecture, and the classification is performed by the proposed Deep Radial Basis Function Neural Network (RBFNN) algorithm based on auto encoder learning mechanism. The proposed model is simulated in MATLAB environment and evaluated with performance metrics—accuracy, precision, sensitivity, specificity, F1 score, error rate, and receiver operating characteristics (ROC). On comparing with existing models, the proposed CNN based Deep RBFNN machine learning classifier model outperformed with better classification performance and proving its effectiveness.

Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Prasanalakshmi Balaji ◽  
Kumarappan Chidambaram

One of the most dangerous diseases that threaten people is cancer. If diagnosed in earlier stages, cancer, with its life-threatening consequences, has the possibility of eradication. In addition, accuracy in prediction plays a significant role. Hence, developing a reliable model that contributes much towards the medical community in the early diagnosis of biopsy images with perfect accuracy comes to the forefront. This article aims to develop better predictive models using multivariate data and high-resolution diagnostic tools in clinical cancer research. This paper proposes the social spider optimisation (SSO) algorithm-tuned neural network to classify microscopic biopsy images of cancer. The significance of the proposed model relies on the effective tuning of the weights of the neural network classifier by the SSO algorithm. The performance of the proposed strategy is analysed with performance metrics such as accuracy, sensitivity, specificity, and MCC measures, and the attained results are 95.9181%, 94.2515%, 97.125%, and 97.68%, respectively, which shows the effectiveness of the proposed method for cancer disease diagnosis.


2021 ◽  
Author(s):  
Yerang Park ◽  
Young Jae Kim ◽  
Woong Ju ◽  
Kyehyun Nam ◽  
Soonyung Kim ◽  
...  

Abstract Human and material resources are scarce in countries such as developing countries with a high rate of cervical cancer. In such an environment, the introduction of automatic diagnostic technology that can replace specialists is urgent. Finding best method of the known methods can accelerate the adoption of computer-aided diagnostic tools for cervical cancer. In this paper, we would like to investigate which method, machine learning or deep learning, has higher classification performance in diagnosing cervical cancer.Using 4,119 sheets, cervical cancer was classified to positive or negative class using Resnet-50 for deep learning, XGB, SVM and RF for mechine learning. In both experiments, square images which of vaginal wall regions are cut were used. In the machine learning, 10 major features were extracted from a total of 300 features.All tests were validated by 5-fold cross-validation, and receiver operating characteristics(ROC) analysis yielded the following AUC: Resnet-50 0.97(CI 95% 0.949-0.976), XGB 0.82(CI 95% 0.797-0.851), SVM 0.84(CI 95% 0.801-0.854), RF 0.79(CI 95% 0.804-0.856). Deep learning was 0.15 point higher (p < 0.05) than the average (0.82) of three machine learning methods.We propose an better algorithm among the previously known or newly proposed algorithms for diagnosis of cervical cancer using cervicography images.


Author(s):  
Prasanalakshmi Balaji ◽  
Kumarappan Chidambaram

One of the most dangerous diseases that threaten people is Cancer. Cancer if diagnosed in earlier stages can be eradicated with its life threatening consequences. In addition, accuracy in prediction plays a major role. Hence, developing a reliable model that contributes much towards the medical community in early diagnosis of Biopsy images with perfect accuracy come to the scenario. The article aims towards development of better predictive models using multi-variate data and high-resolution diagnostic tools in clinical cancer research. This paper proposes the social spider optimization (SSO) algorithm tuned neural network to classify microscopic biopsy images of cancer. The significance of the proposed model relies on the effective tuning of the weights of the NN classifier by the SSO algorithm. The performance of the proposed strategy is analysed with the performance metrics, such as accuracy, sensitivity, specificity, and MCC measures, and are attained to be 95.9181%, 94.2515%, 97.125%, and 97.68% respectively, which shows the effectiveness of the proposed method in effective cancer disease diagnosis.


2021 ◽  
Vol 19 (1-2) ◽  
pp. 41-61
Author(s):  
Hanumantha Rao Nadendla ◽  
A. Srikrishna ◽  
K. Gangadhara Rao

Image classification is the classical issue in computer vision, machine learning, and image processing. The image classification is measured by differentiating the image into the prescribed category based on the content of the vision. In this paper, a novel classifier named RideSFO-NN is developed for image classification. The proposed method performs the image classification by undergoing two steps, namely feature extraction and classification. Initially, the images from various sources are provided to the proposed Weighted Shape-Size Pattern Spectra for pattern analysis. From the pattern analysis, the significant features are obtained for the classification. Here, the proposed Weighted Shape-Size Pattern Spectra is designed by modifying the gray-scale decomposition with Weight-Shape decomposition. Then, the classification is done based on Neural Network (NN) classifier, which is trained using an optimization approach. The optimization will be done by the proposed Ride Sunflower optimization (RideSFO) algorithm, which is the integration of Rider optimization algorithm (ROA), and Sunflower optimization algorithm (SFO). Finally, the image classification performance is evaluated using RideSFO-NN based on sensitivity, specificity, and accuracy. The developed RideSFO-NN method achieves the maximal accuracy of 94%, maximal sensitivity of 93.87%, and maximal specificity of 90.52% based on K-Fold.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1446
Author(s):  
Tanyaporn Pattarabanjird ◽  
Corban Cress ◽  
Anh Nguyen ◽  
Angela Taylor ◽  
Stefan Bekiranov ◽  
...  

Background: Machine learning (ML) has emerged as a powerful approach for predicting outcomes based on patterns and inferences. Improving prediction of severe coronary artery disease (CAD) has the potential for personalizing prevention and treatment strategies and for identifying individuals that may benefit from cardiac catheterization. We developed a novel ML approach combining traditional cardiac risk factors (CRF) with a single nucleotide polymorphism (SNP) in a gene associated with human CAD (ID3 rs11574) to enhance prediction of CAD severity; Methods: ML models incorporating CRF along with ID3 genotype at rs11574 were evaluated. The most predictive model, a deep neural network, was used to classify patients into high (>32) and low level (≤32) Gensini severity score. This model was trained on 325 and validated on 82 patients. Prediction performance of the model was summarized by a confusion matrix and area under the receiver operating characteristics curve (ROC-AUC); and Results: Our neural network predicted severity score with 81% and 87% accuracy for the low and the high groups respectively with an ROC-AUC of 0.84 for 82 patients in the test group. The addition of ID3 rs11574 to CRF significantly enhanced prediction accuracy from 65% to 81% in the low group, and 72% to 84% in the high group. Age, high-density lipoprotein (HDL), and systolic blood pressure were the top 3 contributors in predicting severity score; Conclusions: Our neural network including ID3 rs11574 improved prediction of CAD severity over use of Framingham score, which may potentially be helpful for clinical decision making in patients at increased risk of complications from coronary angiography.


2020 ◽  
Vol 77 (4) ◽  
pp. 1545-1558
Author(s):  
Michael F. Bergeron ◽  
Sara Landset ◽  
Xianbo Zhou ◽  
Tao Ding ◽  
Taghi M. Khoshgoftaar ◽  
...  

Background: The widespread incidence and prevalence of Alzheimer’s disease and mild cognitive impairment (MCI) has prompted an urgent call for research to validate early detection cognitive screening and assessment. Objective: Our primary research aim was to determine if selected MemTrax performance metrics and relevant demographics and health profile characteristics can be effectively utilized in predictive models developed with machine learning to classify cognitive health (normal versus MCI), as would be indicated by the Montreal Cognitive Assessment (MoCA). Methods: We conducted a cross-sectional study on 259 neurology, memory clinic, and internal medicine adult patients recruited from two hospitals in China. Each patient was given the Chinese-language MoCA and self-administered the continuous recognition MemTrax online episodic memory test on the same day. Predictive classification models were built using machine learning with 10-fold cross validation, and model performance was measured using Area Under the Receiver Operating Characteristic Curve (AUC). Models were built using two MemTrax performance metrics (percent correct, response time), along with the eight common demographic and personal history features. Results: Comparing the learners across selected combinations of MoCA scores and thresholds, Naïve Bayes was generally the top-performing learner with an overall classification performance of 0.9093. Further, among the top three learners, MemTrax-based classification performance overall was superior using just the top-ranked four features (0.9119) compared to using all 10 common features (0.8999). Conclusion: MemTrax performance can be effectively utilized in a machine learning classification predictive model screening application for detecting early stage cognitive impairment.


Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 23-27
Author(s):  
Amirul Asyraf Abdul Manan ◽  
Mohd Azraai Mohd Razman ◽  
Ismail Mohd Khairuddin ◽  
Muhammad Nur Aiman Shapiee

This study presents an application of using a Convolutional Neural Network (CNN) based detector to detect chili and its leaves in the chili plant image. Detecting chili on its plant is essential for the development of robotic vision and monitoring. Thus, helps us supervise the plant growth, furthermore, analyses their productivity and quality. This paper aims to develop a system that can monitor and identify bird’s eye chili plants by implementing machine learning. First, the development of methodology for efficient detection of bird’s eye chili and its leaf was made. A dataset of a total of 1866 images after augmentation of bird’s eye chili and its leaf was used in this experiment. YOLO Darknet was implemented to train the dataset. After a series of experiments were conducted, the model is compared with other transfer learning models like YOLO Tiny, Faster R-CNN, and EfficientDet. The classification performance of these transfer learning models has been calculated and compared with each other. The experimental result shows that the Yolov4 Darknet model achieves mAP of 75.69%, followed by EfficientDet at 71.85% for augmented dataset.


2021 ◽  
Vol 10 (4) ◽  
pp. e19310413879
Author(s):  
Weber de Santana Teles ◽  
Aydano Pamponet Machado ◽  
Paulo Celso Curvelo Cantos Júnior ◽  
Cláudia Moura de Melo ◽  
Maria Hozana Santos Silva ◽  
...  

Objective: evaluate the potential use of machine learning and the automatic selection of attributes in discrimination of individuals with and without Chagas disease based on clinical and sociodemographic data. Method: After the evaluation of many learning algorithms, they have been chosen and the comparison between neural network Multilayer Perceptron (MLP) and the Linear Regression (LR) was done, seeking which one presents the best performance for prediction of the Chagas disease diagnosis, being used the criteria of sensitivity, specificity, accuracy and area under the ROC curve (AUC). Generated models were also compared, using the methods of automatic selection of attributes: Forward Selection, Backward Elimination and genetic algorithm. Results: The best results were achieved using the genetic algorithm and the MLP presented accuracy of 95.95%, 78.30% sensitivity, and specificity of 75.00% and AUC of 0.861. Conclusion: It was proved to be a very interesting performance, given the nature of the data used for sorting and use in public health, glimpsing its relevance in the medical field, enabling an approximation of prevalence that justifies the actions of active search of individuals Chagas disease patients for treatment and prevention.


Sign in / Sign up

Export Citation Format

Share Document