scholarly journals CD105+CD90+CD13+ identifies a clonogenic subset of adventitial lung fibroblasts

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Måns Kadefors ◽  
Sara Rolandsson Enes ◽  
Emma Åhrman ◽  
Barbora Michaliková ◽  
Anna Löfdahl ◽  
...  

AbstractMesenchymal cells are important components of specified niches in the lung, and can mediate a wide range of processes including tissue regeneration and repair. Dysregulation of these processes can lead to improper remodeling of tissue as observed in several lung diseases. The mesenchymal cells responsible remain poorly described, partially due to the heterogenic nature of the mesenchymal compartment and the absence of appropriate markers. Here, we describe that CD105+CD90+ mesenchymal cells can be divided into two populations based on their expression of CD13/aminopeptidase N (CD105+CD90+CD13− and CD105+CD90+CD13+). By prospective isolation using FACS, we show that both these populations give rise to clonogenic fibroblast-like cells, but with an increased clonogenic and proliferative capacity of CD105+CD90+CD13+ cells. Transcriptomic and spatial analysis pinpoints an adventitial fibroblast subset as the origin of CD105+CD90+CD13+ clonogenic mesenchymal cells in human lung.

2001 ◽  
Vol 280 (6) ◽  
pp. L1189-L1195 ◽  
Author(s):  
Takeo Ishii ◽  
Takeshi Matsuse ◽  
Hiroko Igarashi ◽  
Michiaki Masuda ◽  
Shinji Teramoto ◽  
...  

Cigarette smoking is thought to be a major risk factor in various lung diseases including lung cancer and emphysema. However, the direct effect of cigarette smoke on the viability of lung-derived cells has not been fully elucidated. In this study, we investigated the viability of human lung fibroblast-derived (HFL1) cells to different concentrations of cigarette smoke extract (CSE). CSE induced apoptosis at lower concentrations (10–25%) and necrosis at higher concentrations (50–100%). We also examined the effects of glutathione S-transferase P1 (GSTP1), one of the xenobiotic metabolizing and antioxidant enzymes in the lung, against the cytotoxicity of CSE. Our results indicated that the level of HFL1 cell death was decreased by transfection with a GSTP1 expression vector and was increased by GSTP1 antisense vector transfection. Therefore, transient overexpression and underexpression of GSTP1 appeared to inhibit and enhance the cytotoxic effects of CSE on HFL1 cells, suggesting that GSTP1 may have protective effects against cigarette smoke in the airway cells.


2019 ◽  
Vol 316 (1) ◽  
pp. L157-L174 ◽  
Author(s):  
Sandra Rutting ◽  
Dia Xenaki ◽  
Monique Malouf ◽  
Jay C. Horvat ◽  
Lisa G. Wood ◽  
...  

Short-chain fatty acids (SCFAs), produced as by-products of dietary fiber metabolism by gut bacteria, have anti-inflammatory properties and could potentially be used for the treatment of inflammatory diseases, including asthma. The direct effects of SCFAs on inflammatory responses in primary human lung mesenchymal cells have not been assessed. We investigated whether SCFAs can protect against tumor necrosis factor (TNF)α-induced inflammation in primary human lung fibroblasts (HLFs) and airway smooth muscle (ASM) cells in vitro. HLFs and ASM cells were exposed to SCFAs, acetate (C2:0), propionate (C3:0), and butyrate (C4:0) (0.01–25 mM) with or without TNFα, and the release of proinflammatory cytokines, IL-6, and CXCL8 was measured using ELISA. We found that none of the SCFAs suppressed TNFα-induced cytokine release. On the contrary, challenge with supraphysiological concentrations (10–25 mM), as might be used therapeutically, of propionate or butyrate in combination with TNFα resulted in substantially greater IL-6 and CXCL8 release from HLFs and ASM cells than challenge with TNFα alone, demonstrating synergistic effects. In ASM cells, challenge with acetate also enhanced TNFα-induced IL-6, but not CXCL8 release. Synergistic upregulation of IL-6 and CXCL8 was mediated through the activation of free fatty acid receptor (FFAR)3, but not FFAR2. The signaling pathways involved were further examined using specific inhibitors and immunoblotting, and responses were found to be mediated through p38 MAPK signaling. This study demonstrates that proinflammatory, rather than anti-inflammatory effects of SCFAs are evident in lung mesenchymal cells.


2008 ◽  
Vol 294 (6) ◽  
pp. L1226-L1232 ◽  
Author(s):  
Koichiro Kamio ◽  
Tadashi Sato ◽  
Xiangde Liu ◽  
Hisatoshi Sugiura ◽  
Shinsaku Togo ◽  
...  

Prostacyclin is a short-lived metabolite of arachidonic acid that is produced by several cells in the lung and prominently by endothelial cells. It increases intracellular cAMP levels activating downstream signaling thus regulating vascular mesenchymal cell functions. The alveolar wall contains a rich capillary network as well as a population of mesenchymal cells, i.e., fibroblasts. The current study evaluated the hypothesis that prostacyclin may mediate signaling between endothelial and mesenchymal cells in the alveolar wall by assessing the ability of prostacyclin analogs to modulate fibroblast release of VEGF. To accomplish this study, human lung fibroblasts were cultured in routine culture on plastic support and in three-dimensional collagen gels with or without three prostacyclin analogs, carbaprostacyclin, iloprost, and beraprost, and the production of VEGF was evaluated by ELISA and quantitative real-time PCR. Iloprost and beraprost significantly stimulated VEGF mRNA levels and protein release in a concentration-dependent manner. These effects were blocked by the adenylate cyclase inhibitor SQ-22536 and by the protein kinase A (PKA) inhibitor KT-5720 and were reproduced by a direct PKA activator but not by an activator of exchange protein directly activated by cAMP (Epac), indicating that cAMP-activated PKA signaling mediated the effect. Since VEGF serves to maintain the pulmonary microvasculature, the current study suggests that prostacyclin is part of a bidirectional signaling network between the mesenchymal and vascular cells of the alveolar wall. Prostacyclin analogs, therefore, have the potential to modulate the maintenance of the pulmonary microcirculation by driving the production of VEGF from lung fibroblasts.


1995 ◽  
Vol 268 (2) ◽  
pp. L278-L283 ◽  
Author(s):  
N. K. Harrison ◽  
K. E. Dawes ◽  
O. J. Kwon ◽  
P. J. Barnes ◽  
G. J. Laurent ◽  
...  

An increase in subepithelial mesenchymal cells and associated connective tissue is a feature of bronchial asthma. We determined whether neuropeptides could modulate fibroblast activity, particularly with respect to proliferation and chemotaxis. Human lung fibroblasts were cultured with neurokinin A (NKA), substance P (SP), vasoactive intestinal peptide (VIP), and calcitonin-gene-related peptide (CGRP). After 48 h, fibroblast proliferation was measured by a colorimetric assay based on the uptake and subsequent release of methylene blue. The chemotactic response to neuropeptides was determined with the use of a modified Boyden chamber. Both NKA and SP (10(-7)-10(-4) M) stimulated human lung fibroblast proliferation in HFL1 and IMR-90 fibroblasts. VIP and CGRP had no effect on fibroblast proliferation. NKA alone stimulated fibroblast chemotaxis maximally at 10(-10) M. Neutral endopeptidase (NEP) activity of 0.52 and 5.2 pmol/10(6) cells was assayed in IMR-90 and Hs68 fibroblasts, respectively. Phosphoramidon (5 x 10(-6)-10(-5) M), an NEP inhibitor, enhanced fibroblast proliferation in a dose-dependent manner. Thus neuropeptides have the potential to cause activation of mesenchymal cells, and neuropeptide release may contribute to the structural abnormalities observed in asthmatic airways.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Ryota Kikuchi ◽  
Yuki Maeda ◽  
Takao Tsuji ◽  
Kazuhiro Yamaguchi ◽  
Shinji Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document