scholarly journals Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pouria Fattahi ◽  
Ali Rahimian ◽  
Michael Q. Slama ◽  
Kihak Gwon ◽  
Alan M. Gonzalez-Suarez ◽  
...  

AbstractCellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain. In this study, we demonstrate that microfluidic encapsulation of hPSCs and formation of spheroids. A co-axial droplet microfluidic device was used to fabricate 400 μm diameter capsules with a poly(ethylene glycol) hydrogel shell and an aqueous core. Spheroid formation was demonstrated for three hPSC lines to highlight broad utility of this encapsulation technology. In-capsule differentiation of stem cell spheroids into pancreatic β-cells in suspension culture was also demonstrated.

2018 ◽  
Vol 9 ◽  
pp. 204173141775371 ◽  
Author(s):  
Andrew C Daly ◽  
Binulal N Sathy ◽  
Daniel J Kelly

Mesenchymal stem cells maintained in appropriate culture conditions are capable of producing robust cartilage tissue. However, gradients in nutrient availability that arise during three-dimensional culture can result in the development of spatially inhomogeneous cartilage tissues with core regions devoid of matrix. Previous attempts at developing dynamic culture systems to overcome these limitations have reported suppression of mesenchymal stem cell chondrogenesis compared to static conditions. We hypothesize that by modulating oxygen availability during bioreactor culture, it is possible to engineer cartilage tissues of scale. The objective of this study was to determine whether dynamic bioreactor culture, at defined oxygen conditions, could facilitate the development of large, spatially homogeneous cartilage tissues using mesenchymal stem cell laden hydrogels. A dynamic culture regime was directly compared to static conditions for its capacity to support chondrogenesis of mesenchymal stem cells in both small and large alginate hydrogels. The influence of external oxygen tension on the response to the dynamic culture conditions was explored by performing the experiment at 20% O2 and 3% O2. At 20% O2, dynamic culture significantly suppressed chondrogenesis in engineered tissues of all sizes. In contrast, at 3% O2 dynamic culture significantly enhanced the distribution and amount of cartilage matrix components (sulphated glycosaminoglycan and collagen II) in larger constructs compared to static conditions. Taken together, these results demonstrate that dynamic culture regimes that provide adequate nutrient availability and a low oxygen environment can be employed to engineer large homogeneous cartilage tissues. Such culture systems could facilitate the scaling up of cartilage tissue engineering strategies towards clinically relevant dimensions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Shinya Yokote ◽  
Shuichiro Yamanaka ◽  
Takashi Yokoo

Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair andde novowhole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 586
Author(s):  
Jong-Ho Lee ◽  
Young-Min Song ◽  
Sae-Kyung Min ◽  
Hyun-Jin Lee ◽  
Hye-Lim Lee ◽  
...  

Background and objectives: NELL-1 is a competent growth factor and it reported to target cells committed to the osteochondral lineage. The secreted, osteoinductive glycoproteins are reported to rheostatically control skeletal ossification. This study was performed to determine the effects of NELL-1 on spheroid morphology and cell viability and the promotion of osteogenic differentiation of stem cell spheroids. Materials and Methods: Cultures of stem cell spheroids of gingiva-derived stem cells were grown in the presence of NELL-1 at concentrations of 1, 10, 100, and 500 ng/mL. Evaluations of cell morphology were performed using a microscope, and cell viability was assessed using a two-color assay and Cell Counting Kit-8. Evaluation of the activity of alkaline phosphatase and calcium deposition assays involved anthraquinone dye assay to determine the level of osteogenic differentiation of cell spheroids treated with NELL-1. Real-time quantitative polymerase chain reaction (qPCR) was used to evaluate the expressions of RUNX2, BSP, OCN, COL1A1, and β-actin mRNAs. Results: The applied stem cells produced well-formed spheroids, and the addition of NELL-1 at tested concentrations did not show any apparent changes in spheroid shape. There were no significant changes in diameter with addition of NELL-1 at 0, 1, 10, 100, and 500 ng/mL concentrations. The quantitative cell viability results derived on Days 1, 3, and 7 did not show significant disparities among groups (p > 0.05). There was statistically higher alkaline phosphatase activity in the 10 ng/mL group compared with the unloaded control on Day 7 (p < 0.05). A significant increase in anthraquinone dye staining was observed with the addition of NELL-1, and the highest value was noted at 10 ng/mL (p < 0.05). qPCR results demonstrated that the mRNA expression levels of RUNX2 and BSP were significantly increased when NELL-1 was added to the culture. Conclusions: Based on these findings, we conclude that NELL-1 can be applied for increased osteogenic differentiation of stem cell spheroids.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen-Hui Zhu ◽  
Dian-Han Zhang ◽  
Chen-Wei Zhu ◽  
Jing Xu ◽  
Chuan-Long Guo ◽  
...  

AbstractEnd-stage liver disease (ESLD) is characterized by the deterioration of liver function and a subsequent high mortality rate. Studies have investigated the use of adult stem cells to treat ESLD. Here, a systematic review and meta-analysis was conducted to determine the efficacy of a combination therapy with adult stem cell transplantation and traditional medicine for treating ESLD. Four databases—including PubMed, Web of Science, Embase, and Cochrane Library—were investigated for studies published before January 31, 2021. The main outcome indicators were liver function index, model for end-stage liver disease (MELD) scores, and Child‒Turcotte‒Pugh (CTP) scores. Altogether, 1604 articles were retrieved, of which eight met the eligibility criteria; these studies included data for 579 patients with ESLD. Combination of adult stem cell transplantation with conventional medicine significantly improved its efficacy with respect to liver function index, CTP and MELD scores, but this effect gradually decreased over time. Moreover, a single injection of stem cells was more effective than two injections with respect to MELD and CTP scores and total bilirubin (TBIL) and albumin (ALB) levels, with no significant difference in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. With respect to the TBIL levels, patients receiving mononuclear cells (MNCs) experienced a significantly greater therapeutic effect—starting from twenty-four weeks after the treatment—whereas with respect to ALB levels, CD34+ autologous peripheral blood stem cells (CD34+ APBSCs) and MNCs had similar therapeutic effects. Severe complications associated with adult stem cell treatment were not observed. Although the benefits of combination therapy with respect to improving liver function were slightly better than those of the traditional treatment alone, they gradually decreased over time.Systematic review registration: PROSPERO registration number: CRD42021238576.


2020 ◽  
Vol 27 (37) ◽  
pp. 6276-6293
Author(s):  
Anjum Mahmood ◽  
Rajasekar Seetharaman ◽  
Prashant Kshatriya ◽  
Divyang Patel ◽  
Anand S. Srivastava

Background: Chronic Liver Disorders (CLD), caused by the lifestyle patterns like alcoholism or by non-alcoholic fatty liver disease or because of virus-mediated hepatitis, affect a large population fraction across the world. CLD progresses into end-stage diseases with a high mortality rate. Liver transplant is the only approved treatment available for such end-stage disease patients. However, the number of liver transplants is limited due to the limited availability of suitable donors and the extremely high cost of performing the procedure. Under such circumstances, Stem Cell (SC) mediated liver regeneration has emerged as a potential therapeutic alternative approach. Objective: This review aims to critically analyze the current status and future prospects of stem cellbased interventions for end-stage liver diseases. The clinical studies undertaken, the mechanism underlying therapeutic effects and future directions have been examined. Method: The clinical trial databases were searched at https://clinicaltrials.gov.in and http://www.isrctn.com to identify randomized, non-randomized and controlled studies undertaken with keywords such as “liver disorder and Mesenchymal Stem Cells (MSCs)”, “liver cirrhosis and MSCs” and “liver disorder and SCs”. Furthermore, https://www.ncbi.nlm.nih.gov/pubmed/ database was also explored with similar keywords for finding the available reports and their critical analyses. Results: The search results yielded a significant number of studies that used bone marrow-derived stem cells, MSCs and hepatocytes. The studies clearly indicated that SCs play a key role in the hepatoprotection process by some mechanisms involving anti-inflammation, auto-immune-suppression, angiogenesis and anti-apoptosis. Further, studies indicated that SCs derived paracrine factors promote angiogenesis, reduce inflammation and inhibit hepatocyte apoptosis. Conclusion: The SC-based interventions provide a significant improvement in patients with CLD; however, there is a need for randomized, controlled studies with the analysis of a long-term follow-up.


2011 ◽  
Vol 27 (5) ◽  
pp. 1421-1432 ◽  
Author(s):  
Ana Fernandes-Platzgummer ◽  
Maria M. Diogo ◽  
Ricardo P. Baptista ◽  
Cláudia Lobato da Silva ◽  
Joaquim M.S. Cabral

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1055
Author(s):  
Jae-Yong Tae ◽  
Yoon-Hee Park ◽  
Youngkyung Ko ◽  
Jun-Beom Park

Bone morphogenetic protein-4 (BMP-4) is engaged in the migration ability of mesenchymal stem cells and the transition of mesenchymal stem cells into osteogenic and adipocytic lines. The aim of this study was to evaluate the effects of BMP-4 on the cellular viability, osteogenic differentiation, and genome-wide mRNA levels using three-dimensional cell spheroids composed of stem cells. Stem cell spheroids were formed using concave microwells in the presence of BMP-4 with final concentrations of 0, 2, 6, and 10 ng/mL. Cellular viability was measured qualitatively using a microscope and quantitatively using an assay kit based on water-soluble tetrazolium salt. Osteogenic differentiation was assessed by measuring the level of alkaline phosphatase activity. Global gene expression was assessed using next-generation mRNA sequencing and performing gene ontology and pathway analyses. Spheroids were well-maintained with the addition of BMP-4 up to Day 7. No significant differences were observed in cell viability between each group. There were significantly higher alkaline phosphatase values in the 2 ng/mL BMP-4 groups when compared with the control (p < 0.05). A total of 25,737 mRNAs were differentially expressed. Expression of β-catenin (CTNNB1) was increased with higher dosages of BMP-4. The expression of runt-related transcription factor 2 (RUNX2) was increased up to 6 ng/mL. The phosphoinositide-3-kinase–protein kinase B/Akt signaling pathway was associated with the target genes. This study demonstrates that the application of BMP-4 enhanced alkaline phosphatase activity and the expression of CTNNB1 and RUNX2 without affecting cellular viability.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Valentin Jossen ◽  
Cedric Schirmer ◽  
Dolman Mostafa Sindi ◽  
Regine Eibl ◽  
Matthias Kraume ◽  
...  

The potential of human mesenchymal stem cells (hMSCs) for allogeneic cell therapies has created a large amount of interest. However, this presupposes the availability of efficient scale-up procedures. Promising results have been reported for stirred bioreactors that operate with microcarriers. Recent publications focusing on microcarrier-based stirred bioreactors have demonstrated the successful use of Computational Fluid Dynamics (CFD) and suspension criteria (NS1u,NS1) for rapidly scaling up hMSC expansions from mL- to pilot scale. Nevertheless, one obstacle may be the formation of large microcarrier-cell-aggregates, which may result in mass transfer limitations and inhomogeneous distributions of stem cells in the culture broth. The dependence of microcarrier-cell-aggregate formation on impeller speed and shear stress levels was investigated for human adipose derived stromal/stem cells (hASCs) at the spinner scale by recording the Sauter mean diameter (d32) versus time. Cultivation at the suspension criteria providedd32values between 0.2 and 0.7 mm, the highest cell densities (1.25 × 106cells mL−1hASCs), and the highest expansion factors (117.0 ± 4.7 on day 7), while maintaining the expression of specific surface markers. Furthermore, suitability of the suspension criterionNS1uwas investigated for scaling up microcarrier-based processes in wave-mixed bioreactors for the first time.


Sign in / Sign up

Export Citation Format

Share Document