scholarly journals Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark L. Dallas ◽  
Moza M. Al-Owais ◽  
Nishani T. Hettiarachchi ◽  
Matthew Scott Vandiver ◽  
Heledd H. Jarosz-Griffiths ◽  
...  

AbstractHydrogen sulfide (H2S) is gaining interest as a mammalian signalling molecule with wide ranging effects. S-sulfhydration is one mechanism that is emerging as a key post translational modification through which H2S acts. Ion channels and neuronal receptors are key target proteins for S-sulfhydration and this can influence a range of neuronal functions. Voltage-gated K+ channels, including Kv2.1, are fundamental components of neuronal excitability. Here, we show that both recombinant and native rat Kv2.1 channels are inhibited by the H2S donors, NaHS and GYY4137. Biochemical investigations revealed that NaHS treatment leads to S-sulfhydration of the full length wild type Kv2.1 protein which was absent (as was functional regulation by H2S) in the C73A mutant form of the channel. Functional experiments utilising primary rat hippocampal neurons indicated that NaHS augments action potential firing and thereby increases neuronal excitability. These studies highlight an important role for H2S in shaping cellular excitability through S-sulfhydration of Kv2.1 at C73 within the central nervous system.

2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


2005 ◽  
Vol 93 (2) ◽  
pp. 843-852 ◽  
Author(s):  
Gergana Hadjilambreva ◽  
Eilhard Mix ◽  
Arndt Rolfs ◽  
Jana Müller ◽  
Ulf Strauss

The immunomodulatory cytokine interferon-β (IFN-β) is used in the treatment of autoimmune diseases such as multiple sclerosis. However, the effect of IFN-β on neuronal functions is currently unknown. Intracellular recordings were conducted on somatosensory neurons of neocortical layers 2/3 and 5 exposed to IFN-β. The excitability of neurons was increased by IFN-β (10–10,000 U/ml) in two kinetically distinct, putatively independent manners. First IFN-β reversibly influenced the subthreshold membrane response by raising the membrane resistance RM 2.5-fold and the membrane time constant τ 1.7-fold dose-dependently. The effect required permanent exposure to IFN-β and was reduced in magnitude if the extracellular K+ was lowered. However, the membrane response to IFN-β in the subthreshold range was prevented by ZD7288 (a specific blocker of Ih) but not by Ni2+, carbachol, or bicuculline, pointing to a dependence on an intact Ih. Second, IFN-β enhanced the rate of action potential firing. This effect was observed to develop for >1 h when the cell was exposed to IFN-β for 5 min or >5 min and showed no reversibility (≤210 min). Current-discharge ( F-I) curves revealed a shift (prevented by bicuculline) as well as an increase in slope (prevented by carbachol and Ni2+). Layer specificity was not observed with any of the described effects. In conclusion, IFN-β influences the neuronal excitability in neocortical pyramidal neurons in vitro, especially under conditions of slightly increased extracellular K+. Our blocker experiments indicate that changes in various ionic conductances with different voltage dependencies cause different IFN-β influences on sub- and suprathreshold behavior, suggesting a more general intracellular process induced by IFN-β.


2020 ◽  
Author(s):  
Shaun S. Sanders ◽  
Luiselys M. Hernandez ◽  
Heun Soh ◽  
Santi Karnam ◽  
Randall S. Walikonis ◽  
...  

AbstractThe palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the Axon Initial Segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.Impact StatementZDHHC14 controls palmitoylation and axon initial segment targeting of PSD93 and Kv1-family potassium channels, events that are essential for normal neuronal excitability.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shaun S Sanders ◽  
Luiselys M Hernandez ◽  
Heun Soh ◽  
Santi Karnam ◽  
Randall S Walikonis ◽  
...  

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


2019 ◽  
Author(s):  
Jessica Abigail Feria Pliego ◽  
Christine M. Pedroarena

ABSTRACTThe Kv1 voltage-gated potassium channels (kv1.1-1.8) display characteristic low-threshold activation ranges what enables their role in regulating diverse aspects of neuronal function, such as the action potential (AP) threshold and waveform, and thereby influence neuronal excitability or synaptic transmission. Kv1 channels are highly expressed in the cerebellar cortex and nuclei and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in regulating the basket-Purkinje cells inhibitory synapses of cerebellar cortex, cerebellar Kv1 channels regulate the principal deep cerebellar nuclear neurons activity (DCNs). DCNs however, include as well different groups of GABAergic cells that project locally to target principal DCNs, or to the inferior-olive or recurrently to the cerebellar cortex, but whether their function is controlled by Kv1 channels remains unclear. Here, using cerebellar slices from the GAD67-GFP line mice to identify putative GABAergic-DCNs and specific Kv1 channel blockers (dendrotoxins-alpha/I/K (DTXs)) we provide evidence that putative GABAergic-DCNs spontaneous and evoked activity is controlled by Kv1 currents. DTXs shifted in the hyperpolarizing direction the voltage threshold of spontaneous APs in GABAergic-DCNs, increased GABAergic-DCNs spontaneous firing rate and decreased these neurons ability to fire repetitively action potentials at high frequency. Moreover, in spontaneously silent putative nucleo-cortical DCNs, DTXs application induced depolarization and tonic firing. These results strongly suggest that Kv1 channels regulate GABAergic-DCNs activity and thereby can control previously unrecognized aspects of cerebellar function.


2019 ◽  
Vol 121 (3) ◽  
pp. 773-784 ◽  
Author(s):  
Timothy W. Church ◽  
Jon T. Brown ◽  
Neil V. Marrion

Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway. However, little is known regarding modulation of the medium AHP. Application of the selective β-adrenergic receptor agonist isoproterenol suppressed both the medium and slow AHPs evoked in rat CA1 hippocampal pyramidal neurons recorded from slices maintained in organotypic culture. Suppression of the slow AHP was mimicked by intracellular application of cAMP, with the suppression of the medium AHP by isoproterenol still being evident in cAMP-dialyzed cells. Suppression of both the medium and slow AHPs was antagonized by the β-adrenergic receptor antagonist propranolol. The effect of isoproterenol to suppress the medium AHP was mimicked by two β3-adrenergic receptor agonists, BRL37344 and SR58611A. The medium AHP was mediated by activation of small-conductance calcium-activated K+ channels and deactivation of H channels at the resting membrane potential. Suppression of the medium AHP by isoproterenol was reduced by pretreating cells with the H-channel blocker ZD7288. These data suggest that activation of β3-adrenergic receptors inhibits H channels, which suppresses the medium AHP in CA1 hippocampal neurons by utilizing a pathway that is independent of a rise in intracellular cAMP. This finding highlights a potential new target in modulating H-channel activity and thereby neuronal excitability. NEW & NOTEWORTHY The noradrenergic input into the hippocampus is involved in modulating long-term synaptic plasticity and is implicated in learning and memory. We demonstrate that activation of functional β3-adrenergic receptors suppresses the medium afterhyperpolarization in hippocampal pyramidal neurons. This finding provides an additional mechanism to increase action potential firing frequency, where neuronal excitability is likely to be crucial in cognition and memory.


2010 ◽  
Vol 107 (5) ◽  
pp. 2283-2288 ◽  
Author(s):  
William J. Brackenbury ◽  
Jeffrey D. Calhoun ◽  
Chunling Chen ◽  
Haruko Miyazaki ◽  
Nobuyuki Nukina ◽  
...  

Voltage-gated Na+ channel (VGSC) β1 subunits regulate cell–cell adhesion and channel activity in vitro. We previously showed that β1 promotes neurite outgrowth in cerebellar granule neurons (CGNs) via homophilic cell adhesion, fyn kinase, and contactin. Here we demonstrate that β1-mediated neurite outgrowth requires Na+ current (INa) mediated by Nav1.6. In addition, β1 is required for high-frequency action potential firing. Transient INa is unchanged in Scn1b (β1) null CGNs; however, the resurgent INa, thought to underlie high-frequency firing in Nav1.6-expressing cerebellar neurons, is reduced. The proportion of axon initial segments (AIS) expressing Nav1.6 is reduced in Scn1b null cerebellar neurons. In place of Nav1.6 at the AIS, we observed an increase in Nav1.1, whereas Nav1.2 was unchanged. This indicates that β1 is required for normal localization of Nav1.6 at the AIS during the postnatal developmental switch to Nav1.6-mediated high-frequency firing. In agreement with this, β1 is normally expressed with α subunits at the AIS of P14 CGNs. We propose reciprocity of function between β1 and Nav1.6 such that β1-mediated neurite outgrowth requires Nav1.6-mediated INa, and Nav1.6 localization and consequent high-frequency firing require β1. We conclude that VGSC subunits function in macromolecular signaling complexes regulating both neuronal excitability and migration during cerebellar development.


2020 ◽  
Vol 117 (39) ◽  
pp. 24526-24533
Author(s):  
Joana S. Ferreira ◽  
Julien P. Dupuis ◽  
Blanka Kellermayer ◽  
Nathan Bénac ◽  
Constance Manso ◽  
...  

Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)—which play key roles in the use-dependent adaptation of glutamatergic synapses—along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.


2016 ◽  
Vol 7 (3) ◽  
pp. 2347-2352 ◽  
Author(s):  
David M. Barber ◽  
Matthias Schönberger ◽  
Jessica Burgstaller ◽  
Joshua Levitz ◽  
C. David Weaver ◽  
...  

We describe the development of the photoswitchable agonistLOGO, which activates GIRK channels in the dark and is rapidly deactivated upon exposure to long wavelength UV irradiation.LOGOcan be used to optically silence action potential firing in dissociated hippocampal neurons and exhibits activityin vivo, controlling the motility of zebrafish larvae in a light-dependent fashion.


Sign in / Sign up

Export Citation Format

Share Document