scholarly journals Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Veronika Řezáčová ◽  
Alena Czakó ◽  
Martin Stehlík ◽  
Markéta Mayerová ◽  
Tomáš Šimon ◽  
...  

AbstractAn important goal of sustainable agriculture is to maintain soil quality. Soil aggregation, which can serve as a measure of soil quality, plays an important role in maintaining soil structure, fertility, and stability. The process of soil aggregation can be affected through impacts on biotic and abiotic factors. Here, we tested whether soil management involving application of organic and mineral fertilizers could significantly improve soil aggregation and if variation among differently fertilized soils could be specifically attributed to a particular biotic and/or abiotic soil parameter. In a field experiment within Central Europe, we assessed stability of 1–2 mm soil aggregates together with other parameters of soil samples from differently fertilized soils. Application of compost and digestates increased stability of soil aggregates. Most of the variation in soil aggregation caused by different fertilizers was associated with soil organic carbon lability, occurrence of aromatic functional groups, and variations in abundance of eubacteria, total glomalins, concentrations of total S, N, C, and hot water extractable C. In summary, we have shown that application of compost and digestates improves stability of soil aggregates and that this is accompanied by increased soil fertility, decomposition resistance, and abundance of total glomalins and eubacteria. These probably play significant roles in increasing stability of soil aggregates.

2021 ◽  
Author(s):  
Diego Camilo Peña Quemba ◽  
Alia Rodriguez ◽  
Ian Sanders

<p>Soil degradation is a major concern worldwide and tropical agriculture is a major contributor to CO<sub>2</sub> release from soils. There is growing interest in stabilizing atmospheric CO<sub>2</sub> abundance to reduce its direct effect on global warming, by focusing on the potential of soil to sequester carbon. Soil structure directly influences soil stability and carbon sequestration. Arbuscular mycorrhizal fungi (AMF) are one of the most important microbial soil components for soil aggregate formation and stabilization through physical and biochemical processes allowing the encapsulation of organic carbon. However, the contribution of AMF to soil aggregation remains to be demonstrated under field and farming conditions and has only been shown in pot experiments with sterilized non-mycorrhizal controls. Large differences in cassava (Manihot esculenta Cranz), yield when inoculated under field conditions with diverse isolates of the AMF species Rhizophagus irregularis, suggests that carbon directed belowground and more importantly carbon sequestered within soil aggregates after harvesting might be driven by differences among AMF inocula. Thus, we evaluated the effect of 11 different isolates of Rhizophagus irregularis on CO<sub>2</sub> emissions to the atmosphere (soil respiration), soil aggregation and the amount of soil organic carbon stored in aggregates in soils under commercial cassava cropping. Soil respiration was measured in situ by infrared gas analyser (IRGA, Li-COR 8100A) means. Soil samples were taken in surface (10 cm) and subsoil (30 cm) were taken to determine water stable aggregates size distribution (6.3, 4, 2, 1 and 0.5 mm), total stable aggregates (TSA) and total organic carbon (TOC) per aggregate size. After just one-year, our results showed that carbon decomposition (as measured by soil respiration), soil aggregation and carbon storage (in soil aggregates) were significantly affected by inoculation with AMF. Soil respiration was strongly and differentially affected by R. irregularisisolates with a difference of up to 78% in CO<sub>2</sub> release from the soil. In surface, we found differences in TSA of up to 20% among inoculation treatments driven principally by an increase up to 6.3% in macroaggregate sizes. In subsoil, the TSA differences were up to 40% between AMF lines and at 2 mm aggregate size differences were up to 9,22% compare with non-inoculated treatment. Interestingly in this experiment, TOC and soil aggregation were not correlated. Although TOC in macroaggregates was significatively different up 44% among AMF treatments. Soil aggregation is a soil property often thought as static. Moreover, changes in soil aggregation as the ones we have shown here had only been reported after long-term experiments (up to 30 years) with low intrusive tillage practices (non- or reduced-tillage). Our results clearly show the enormous potential of using AMF in field conditions as a primary tool to improve ecosystem services and soil health in short periods of time.</p><p><strong>Keywords: </strong>Soil aggregation, AMF, Cassava, carbon storage, soil respiration</p>


2004 ◽  
Vol 84 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Matthias C. Rillig

Arbuscular mycorrhizae are important factors of soil quality through their effects on host plant physiology, soil ecological interactions, and their contributions to maintaining soil structure. The symbiosis is faced with numerous challenges in agroecosystems; in order to inform sustainable management strategies it is hence a high priority to work towards mechanistic understanding of arbuscular mycorrhizae contributions to soil quality. This review focuses on glomalin-related soil protein (GRSP), operationally defined soil C pools that have been linked to arbuscular mycorrhizal fungi (AMF). In discussing this protein pool, we propose a new terminology used to describe fractions of soil proteins and glomalin. GRSP concentrations in soil are positively correlated with aggregate water stability. GRSP has relatively slow turnover in soil, contributing to lasting effects on aggregation. Controls on production of GRSP at the phenomenological and mechanistic level are evaluated. While there are significant gaps in our knowledge about GRSP and glomalin (particularly at the biochemical level), it is concluded that research on GRSP holds great promise for furthering our knowledge of soil structure and quality, for informing suitable management, and as a foundation for novel biotechnological applications in agriculture and beyond. Key words: Glomalin, GRSP, soil structure, land use, restoration, soil protein, sustainability, arbuscular mycorrhizae


2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


Mycorrhiza ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Bo Maxwell Stevens ◽  
Jeffrey Ryan Propster ◽  
Maarja Öpik ◽  
Gail W. T. Wilson ◽  
Sara Lynne Alloway ◽  
...  

2019 ◽  
Vol 43 ◽  
Author(s):  
Marisângela Viana Barbosa ◽  
Daniela de Fátima Pedroso ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

ABSTRACT Soil structure, which is defined by the arrangement of the particles and the porous space forming aggregates, is one of the most important properties of the soil. Among the biological factors that influence the formation and stabilization of soil aggregates, arbuscular mycorrhizal fungi (AMF) are distinguished due to extrarradicular hyphae and glomalin production. In this context, the objective of this study was to evaluate different AMF (Acaulospora colombiana, Acaulospora longula, Acaulospora morrowiae, Paraglomus occultum and Gigaspora margarita) associated with Urochloa brizantha (A. Rich.) Stapf on soil aggregate stability. The study was conducted in a completely randomized design, using an Oxisol and autoclaved sand 2:1 (v/v), with seven treatments: five AMF; and treatments with plants without inoculation and with only the soil, with 5 replicates. The experiment was conducted during 180 days and the following variables were evaluated: mycelium total length (TML); production of easily extractable glomalin-related soil protein (GRSP) in the soil and aggregate classes; stability of the dry and immersed in water aggregates through the mean geometric diameter (MGD) and the mean weighted diameter (MWD) of aggregates; and the soil aggregate stability index (ASI). It was observed that the inoculation favored soil aggregation, with a high incidence of A. colombiana, which presented the highest MGD, TML and GRSP production in the aggregates with Ø>2.0mm and for A. colombiana and A. morrowiae in the aggregates with Ø<0.105 mm, when compared to the treatment without inoculation. These results show that there is a distinction between the effects of different AMF on the formation and stability of soil aggregates.


2014 ◽  
Vol 38 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Priscila Viviane Truber ◽  
Carolina Fernandes

Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.


2019 ◽  
Vol 13 (7) ◽  
pp. 1639-1646 ◽  
Author(s):  
E. K. Morris ◽  
D. J. P. Morris ◽  
S. Vogt ◽  
S.-C. Gleber ◽  
M. Bigalke ◽  
...  

2020 ◽  
Vol 47 (No. 2) ◽  
pp. 122-129
Author(s):  
Sławomir Głuszek ◽  
Edyta Derkowska ◽  
Lidia Sas Paszt ◽  
Mirosław Sitarek ◽  
Beata Sumorok

The experiment assessed the influence of various biofertilizers and biostimulants on the growth characteristics of the root system, its colonization by arbuscular mycorrhizal fungi and the yielding of sweet cherry trees in field conditions. The experiment, conducted in Pomological Orchard of Research Institute of Horticulture located in Skierniewice during 2011–2014, involved the use of a mycorrhizal substrate, organic fertilizers and biostimulant in randomised block design. The control combination consisted of plants fertilized with mineral fertilizers (NPK). The use of the organic fertilizer BF Ekomix in dose 100 g per tree each year in the spring significantly increased the number of root tips in comparison with the control trees. There was also a tendency for the roots to lengthen and increase their surface area under the influence of this biofertilizer. In addition, the inoculation of roots with the mycorrhizal substrate in dose 200 g per tree per year stimulated the colonization of the roots of sweet cherry trees by arbuscular mycorrhizal fungi, which in turn led to improved root growth parameters.


Sign in / Sign up

Export Citation Format

Share Document