scholarly journals Stratigraphy of stable isotope ratios and leaf structure within an African rainforest canopy with implications for primate isotope ecology

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. E. Lowry ◽  
R. M. Wittig ◽  
J. Pittermann ◽  
V. M. Oelze

AbstractThe canopy effect describes vertical variation in the isotope ratios of carbon (δ13C), oxygen (δ18O) and partially nitrogen (δ15N) within plants throughout a closed canopy forest, and may facilitate the study of canopy feeding niches in arboreal primates. However, the nuanced relationship between leaf height, sunlight exposure and the resulting variation in isotope ratios and leaf mass per area (LMA) has not been documented for an African rainforest. Here, we present δ13C, δ18O and δ15N values of leaves (n = 321) systematically collected from 58 primate food plants throughout the canopy (0.3 to 42 m) in Côte d’Ivoire, West Africa. Besides leaf sample height and light availability, we measured leaf nitrogen and carbon content (%N, %C), as well as LMA (n = 214) to address the plants’ vertical resource allocations. We found significant variation in δ13C, δ18O and δ15N, as well as LMA in response to height in combination with light availability and tree species, with low canopy leaves depleted in 13C, 18O and 15N and slightly higher in %N compared to higher canopy strata. While this vertical isotopic variation was not well reflected in the δ13C and δ15N of arboreal primates from this forest, it did correspond well to primate δ18O values.

1969 ◽  
Vol 44 (1) ◽  
pp. 11-15
Author(s):  
G. Samuels ◽  
S. Alers-Alers ◽  
P. Landrau, Jr.

Leaf samples of sugarcane were taken from a fertilizer experiment at Río Piedras with varieties B. 41227 and M. 336 to determine whether the height of cane or the number of leaves present at leaf-sampling time influenced the nutrient content of the leaf sample. It was found that: 1. There was no significant difference in leaf nitrogen or potassium from cane tillers aged 3 months with heights of 12, 24, and 36 inches. 2. Variations in cane height at time of sampling did influence leaf-phosphorus values; there were increases in cane height. 3. The number of leaves present at time of sampling (7-13 weeks) did not influence leaf-nutrient values in general, except for nitrogen and phosphorus at 9 weeks of age. Here the trends of this influence with the two varieties studied were contrary.


2006 ◽  
Vol 84 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Yoshiyuki Miyazawa ◽  
Kihachiro Kikuzawa

Photosynthetic traits of the evergreen broadleafed species Camellia japonica L. and Quercus glauca Thunb. were continuously investigated during autumn and winter using saplings that grew in different light environments (gap, deciduous canopy understory, and evergreen canopy understory) in a temperate forest. Light-saturated rates of net photosynthesis in midwinter and spring were lower than those in autumn. Photosynthetic capacity, scaled to a common leaf temperature of 25 °C, increased or remained stable after autumn and then decreased in spring in most leaves. Photosynthetic traits per unit leaf area were different among leaves in different light environments of both Camellia and Quercus during most periods. However, photosynthetic traits per unit leaf mass did not differ among leaves in different light environments, suggesting that differences in photosynthetic traits were mainly due to different leaf mass per area among leaves. Photosynthetic rates under light availability typical in the environment were lower in winter than in autumn in leaves in the sun in a gap but were not different in leaves in the shade under evergreen canopy trees. Thus, the importance of winter carbon gain for annual carbon gain is small in leaves in a gap but is large in leaves under evergreen canopy trees.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 318
Author(s):  
Guangman Song ◽  
Quan Wang ◽  
Jia Jin

A clear understanding of the dynamics of photosynthetic capacity is crucial for accurate modeling of ecosystem carbon uptake. However, such dynamical information is hardly available and has dramatically impeded our understanding of carbon cycles. Although tremendous efforts have been made in coupling the dynamic information of photosynthetic capacity into models, using “proxies” rooted from the close relationships between photosynthetic capacity and other available leaf parameters remains the popular selection. Unfortunately, no consensus has yet been reached on such “proxies”, leading them only applicable to limited cases. In this study, we aim to identify if there are close relationships between the photosynthetic capacity (represented by the maximum carboxylation rate, Vcmax) and leaf traits for mature broadleaves within a cold temperature deciduous forest. This is based on a long-term in situ dataset including leaf chlorophyll content (Chl), leaf nitrogen concentration (Narea, Nmass), leaf carbon concentration (Carea, Cmass), equivalent water thickness (EWT), leaf mass per area (LMA), and leaf gas exchange measurements from which Vcmax was derived, for both sunlit and shaded leaves during leaf mature periods from 2014 to 2019. The results show that the Vcmax values of sunlit and shaded leaves were relatively stable during these periods, and no statistically significant interannual variations occurred (p > 0.05). However, this is not applicable to specific species. Path analysis revealed that Narea was the major contributor to Vcmax for sunlit leaves (0.502), while LMA had the greatest direct relationship with Vcmax for shaded leaves (0.625). The LMA has further been confirmed as a primary proxy if no leaf type information is available. These findings provide a promising way to better understand photosynthesis and to predict carbon and water cycles in temperate deciduous forests.


Botany ◽  
2011 ◽  
Vol 89 (11) ◽  
pp. 779-785 ◽  
Author(s):  
Bogdan Jaroszewicz ◽  
Ewa Pirożnikow

Many studies show large discrepancies between the potential (studied in the greenhouse) and realized (studied in the field) effects of endozoochory. The influence of environmental conditions on the fate of endozoochorically dispersed seeds and subsequent plant establishment is still not well understood. We addressed this issue by studying the viable seed content of the dung of European bison ( Bison bonasus L.) by means of seedling germination in the greenhouse and in two forest habitats in Białowieża Primeval Forest. The number of seedlings and the number of plant species that emerged from 1 L of feces were positively correlated with dung longevity. Generative shoots were produced by plants only in coniferous forest. Their number was positively correlated with dung longevity and with light availability. Germination of seeds from bison feces was higher in coniferous forest than in deciduous forest but did not differ between open- and closed-canopy plots within the same habitat. We conclude that (i) seed germination and plant establishment after endozoochorous dispersal is influenced by dung longevity; (ii) the number of generative shoots produced by endozoochorously dispersed plants is influenced by dung longevity and light availability; (iii) seeds of some plant species, present in dung, stay viable for at least 3 years.


2008 ◽  
Vol 35 (6) ◽  
pp. 439 ◽  
Author(s):  
A. P. O'Grady ◽  
D. Worledge ◽  
A. Wilkinson ◽  
M. Battaglia

Within canopy gradients in light-saturated photosynthesis (Amax), foliar nitrogen ([N]area) and leaf dark respiration (R15) were studied in the canopies of dominant and suppressed trees within an even-aged (4-year-old) Eucalyptus globulus (Labill) stand in southern Tasmania. Despite being an even-aged stand growing in a relatively uniform environment with respect to nutrient and water availability, the stand exhibited considerable structural complexity. Diameter at 1.3 m ranged between 3 cm and 21 cm, trees average 12 m height and stand leaf area index was ~6 m2 m–2 leading to strong gradients in light availability. We were interested in understanding the processes governing canopy production in trees of contrasting dominance classes. Vertical gradients in photosynthesis and foliar respiration were studied within the canopies of dominant and suppressed trees during 2006 and 2007. Amax varied from ~18 μmol m–2 s–1 in the upper canopy to 3 μmol m–2 s–1 at lower canopy positions. On average, Amax were higher in the dominant trees than in the suppressed trees. However, at any given height, Amax were similar in suppressed and dominant trees and were strongly related to leaf nitrogen content. Dark respiration varied from ~1.4 μmol m–2 s–1 in the upper canopy to 0.2 μmol m–2 s–1 in the lower canopy positions. In contrast to the patterns for Amax, dark respiration rates in the suppressed trees were higher than dominant trees at similar canopy positions. Respiration rates were also strongly related to [N]area and to Amax.


2013 ◽  
Vol 9 (4) ◽  
pp. 20130466 ◽  
Author(s):  
John Krigbaum ◽  
Michael H. Berger ◽  
David J. Daegling ◽  
W. Scott McGraw

This study tests the hypothesis that vertical habitat preferences of different monkey species inhabiting closed canopy rainforest are reflected in oxygen isotopes. We sampled bone from seven sympatric cercopithecid species in the Taï forest, Côte d'Ivoire, where long-term study has established taxon-specific patterns of habitat use and diet. Modern rib samples ( n = 34) were examined for oxygen ( δ 18 O ap ) and carbon ( δ 13 C ap ) from bone apatite (‘bioapatite’), and carbon ( δ 13 C co ) and nitrogen ( δ 15 N co ) from bone collagen. Results are consistent for C 3 feeders in a closed canopy habitat. Low irradiance and evapotranspiration, coupled with high relative humidity and recycled CO 2 in forest understory, contribute to observed isotopic variability. Both δ 13 C co and δ 13 C ap results reflect diet; however, δ 13 C values are not correlated with species preference for canopy height. By contrast, δ 18 O ap results are correlated with mean observed height and show significant vertical partitioning between taxa feeding at ground, lower and upper canopy levels. This oxygen isotope canopy effect has important palaeobiological implications for reconstructing vertical partitioning among sympatric primates and other species in tropical forests.


2017 ◽  
Vol 37 (9) ◽  
pp. 1140-1150 ◽  
Author(s):  
Alec S. Baird ◽  
Leander D.L. Anderegg ◽  
Melissa E. Lacey ◽  
Janneke HilleRisLambers ◽  
Elizabeth Van Volkenburgh

1991 ◽  
Vol 7 (1) ◽  
pp. 85-97 ◽  
Author(s):  
J. Popma ◽  
F. Bongers

ABSTRACTA comparison is made of the light acclimation potential of seedlings of three canopy species of the tropical rain forest of Los Tuxtlas, Mexico: Cordia megalantha, Lonchocarpus guatemalensis, and Omphalea oleifera. These species showed similar growth rates in a range of microhabitats. Gap dynamics were simulated by transferring plants between three environments: beneath a closed canopy, a small gap, and a large gap. Plants of all three species were able to adjust their morphology and growth rates in response to changes in light availability. Growth rates increased when plants were moved to a (larger) gap, and decreased when plants were moved to a more shaded environment. Shade-grown plants were able to acclimate faster to increasing light availability than sun-grown plants to decreasing light availability. Also, plants moved from shady to sunny conditions showed higher relative growth rates than sun control plants, whereas sun-grown plants when moved to the shade showed lower relative growth rates than shade control plants. Species differed in their response to gap dynamics. Omphalea could not acclimate morphologically to shading, but reacted faster than the other species in response to the occurrence of a large gap. Acclimation potential seemed to be related to plasticity in physiological rather than in morphological traits. Suppressed seedlings of all three species performed well in the shade, and were able to acclimate rapidly to gap-conditions.


Sign in / Sign up

Export Citation Format

Share Document