scholarly journals Fuzzy rank-based fusion of CNN models using Gompertz function for screening COVID-19 CT-scans

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohit Kundu ◽  
Hritam Basak ◽  
Pawan Kumar Singh ◽  
Ali Ahmadian ◽  
Massimiliano Ferrara ◽  
...  

AbstractCOVID-19 has crippled the world’s healthcare systems, setting back the economy and taking the lives of several people. Although potential vaccines are being tested and supplied around the world, it will take a long time to reach every human being, more so with new variants of the virus emerging, enforcing a lockdown-like situation on parts of the world. Thus, there is a dire need for early and accurate detection of COVID-19 to prevent the spread of the disease, even more. The current gold-standard RT-PCR test is only 71% sensitive and is a laborious test to perform, leading to the incapability of conducting the population-wide screening. To this end, in this paper, we propose an automated COVID-19 detection system that uses CT-scan images of the lungs for classifying the same into COVID and Non-COVID cases. The proposed method applies an ensemble strategy that generates fuzzy ranks of the base classification models using the Gompertz function and fuses the decision scores of the base models adaptively to make the final predictions on the test cases. Three transfer learning-based convolutional neural network models are used, namely VGG-11, Wide ResNet-50-2, and Inception v3, to generate the decision scores to be fused by the proposed ensemble model. The framework has been evaluated on two publicly available chest CT scan datasets achieving state-of-the-art performance, justifying the reliability of the model. The relevant source codes related to the present work is available in: GitHub.

Author(s):  
Vo Ngoc Phu ◽  
Vo Thi Ngoc Tran

Artificial intelligence (ARTINT) and information have been famous fields for many years. A reason has been that many different areas have been promoted quickly based on the ARTINT and information, and they have created many significant values for many years. These crucial values have certainly been used more and more for many economies of the countries in the world, other sciences, companies, organizations, etc. Many massive corporations, big organizations, etc. have been established rapidly because these economies have been developed in the strongest way. Unsurprisingly, lots of information and large-scale data sets have been created clearly from these corporations, organizations, etc. This has been the major challenges for many commercial applications, studies, etc. to process and store them successfully. To handle this problem, many algorithms have been proposed for processing these big data sets.


2021 ◽  
Vol 4 (2) ◽  
pp. 34-69
Author(s):  
Dávid Burka ◽  
László Kovács ◽  
László Szepesváry

Pricing an insurance product covering motor third-party liability is a major challenge for actuaries. Comprehensive statistical modelling and modern computational power are necessary to solve this problem. The generalised linear and additive modelling approaches have been widely used by insurance companies for a long time. Modelling with modern machine learning methods has recently started, but applying them properly with relevant features is a great issue for pricing experts. This study analyses the claim-causing probability by fitting generalised linear modelling, generalised additive modelling, random forest, and neural network models. Several evaluation measures are used to compare these techniques. The best model is a mixture of the base methods. The authors’ hypothesis about the existence of significant interactions between feature variables is proved by the models. A simplified classification and visualisation is performed on the final model, which can support tariff applications later.


Over the few years the world has seen a surge in fake news and some people are even calling it an epidemic. Misleading false articles are sold as news items over social media, whatsapp etc where no proper barrier is set to check the authenticity of posts. And not only articles but news items also contain images which are doctored to mislead the public or cause sabotage. Hence a proper barrier to check for authenticity of images related to news items is absolutely necessary. And hence classification of images(related to news items) on the basis of authenticity is imminent. This paper discusses the possibilities of identifying fake images using machine learning techniques. This is an introduction into fake news detection using the latest evolving neural network models


Author(s):  
Saurabh Kumar

The prices of cryptocurrencies are very volatile and forecasting them is a challenging task for the researchers across the world. The present study examines the accuracy of forecasted returns of the two most popular cryptocurrencies (Bitcoin and Ethereum) for the sample period spanning from October 1, 2013, to November 30, 2018. Auto-regressive integrated moving average (ARIMA) and Neural Network models have been used to forecast the returns of the cryptocurrencies. The forecasting results for different time-horizons indicate that for a shorter time-horizon, ARIMA model is better for forecasting the returns of cryptocurrencies, whereas, for a longer time-horizon, Neural Network model is better for forecasting the returns of cryptocurrencies. These results have implications for traders, investors, regulators, policymakers and academia.


2021 ◽  
Vol 56 (2) ◽  
pp. 235-248
Author(s):  
Fatchul Arifin ◽  
Herjuna Artanto ◽  
Nurhasanah ◽  
Teddy Surya Gunawan

COVID-19 is a new disease with a very rapid and tremendous spread. The most important thing needed now is a COVID-19 early detection system that is fast, easy to use, portable, and affordable. Various studies on desktop-based detection using Convolutional Neural Networks have been successfully conducted. However, no research has yet applied mobile-based detection, which requires low computational cost. Therefore, this research aims to produce a COVID-19 early detection system based on chest X-ray images using Convolutional Neural Network models to be deployed in mobile applications. It is expected that the proposed Convolutional Neural Network models can detect COVID-19 quickly, economically, and accurately. The used architecture is MobileNet's Single Shot Detection. The advantage of the Single Shot Detection MobileNet models is that they are lightweight to be applied to mobile-based devices. Therefore, these two versions will also be tested, which one is better. Both models have successfully detected COVID-19, normal, and viral pneumonia conditions with an average overall accuracy of 93.24% based on the test results. The Single Shot Detection MobileNet V1 model can detect COVID-19 with an average accuracy of 83.7%, while the Single Shot Detection MobileNet V2 Single Shot Detection model can detect COVID-19 with an average accuracy of 87.5%. Based on the research conducted, it can be concluded that the approach to detecting chest X-rays of COVID-19 can be detected using the MobileNet Single Shot Detection model. Besides, the V2 model shows better performance than the V1. Therefore, this model can be applied to increase the speed and affordability of COVID-19 detection.


Author(s):  
Dong Kwan Kim

Code smell refers to any symptom introduced in design or implementation phases in the source code of a program. Such a code smell can potentially cause deeper and serious problems during software maintenance. The existing approaches to detect bad smells use detection rules or standards using a combination of different object-oriented metrics. Although a variety of software detection tools have been developed, they still have limitations and constraints in their capabilities. In this paper, a code smell detection system is presented with the neural network model that delivers the relationship between bad smells and object-oriented metrics by taking a corpus of Java projects as experimental dataset. The most well-known object-oriented metrics are considered to identify the presence of bad smells. The code smell detection system uses the twenty Java projects which are shared by many users in the GitHub repositories. The dataset of these Java projects is partitioned into mutually exclusive training and test sets. The training dataset is used to learn the network model which will predict smelly classes in this study. The optimized network model will be chosen to be evaluated on the test dataset. The experimental results show when the modelis highly trained with more dataset, the prediction outcomes are improved more and more. In addition, the accuracy of the model increases when it performs with higher epochs and many hidden layers.


Crop diseases reduce the yield of the crop or may even kill it. Over the past two years, as per the I.C.A.R, the production of chilies in the state of Goa has reduced drastically due to the presence of virus. Most of the plants flower very less or stop flowering completely. In rare cases when a plant manages to flower, the yield is substantially low. Proposed model detects the presence of disease in crops by examining the symptoms. The model uses an object detection algorithm and supervised image recognition and feature extraction using convolutional neural network to classify crops as infected or healthy. Google machine learning libraries, TensorFlow and Keras are used to build neural network models. An Android application is developed around the model for the ease of using the disease detection system.


2006 ◽  
Vol 30 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Basak Guven ◽  
Alan Howard

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.


2022 ◽  
pp. 112-145
Author(s):  
Vo Ngoc Phu ◽  
Vo Thi Ngoc Tran

Artificial intelligence (ARTINT) and information have been famous fields for many years. A reason has been that many different areas have been promoted quickly based on the ARTINT and information, and they have created many significant values for many years. These crucial values have certainly been used more and more for many economies of the countries in the world, other sciences, companies, organizations, etc. Many massive corporations, big organizations, etc. have been established rapidly because these economies have been developed in the strongest way. Unsurprisingly, lots of information and large-scale data sets have been created clearly from these corporations, organizations, etc. This has been the major challenges for many commercial applications, studies, etc. to process and store them successfully. To handle this problem, many algorithms have been proposed for processing these big data sets.


Sign in / Sign up

Export Citation Format

Share Document