scholarly journals Surface plasmon resonance unveils important pitfalls of enzyme-linked immunoassay for the detection of anti-infliximab antibodies in patients’ sera

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marten Beeg ◽  
Cesare Burti ◽  
Eleonora Allocati ◽  
Clorinda Ciafardini ◽  
Rita Banzi ◽  
...  

AbstractMeasurements of serum concentrations of therapeutic antibodies and anti-drug antibodies (ADA) can support clinical decisions for the management of non-responders, optimizing the therapy. In the present study we compared the results obtained by classical ELISA and a recently proposed surface plasmon resonance (SPR)-based immunoassay, in 76 patients receiving infliximab for inflammatory bowel diseases. The two methods indicated very similar serum concentrations of the drug, but there were striking differences as regards ADA. All the sera showing ADA by ELISA (14) also showed ADA by SPR, but the absolute amounts were different, being 7–490 times higher with SPR, with no correlation. Eight patients showed ADA only with SPR, and these ADA had significantly faster dissociation rate constants than those detectable by both SPR and ELISA. The underestimation, or the lack of detection, of ADA by ELISA is likely to reflect the long incubation steps which favor dissociation of the patient’s low-affinity ADA, while the commercial, high-affinity anti-infliximab antibodies used for the calibration curve do not dissociate. This problem is less important with SPR, which monitors binding in real time. The possibility offered by SPR to detect ADA in patients otherwise considered ADA-negative by ELISA could have important implications for clinicians.

2013 ◽  
Vol 19 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Daisuke Kitagawa ◽  
Masaki Gouda ◽  
Yasuyuki Kirii

In evaluating kinase inhibitors, kinetic parameters such as association/dissociation rate constants are valuable information, as are equilibrium parameters KD and IC50 values. Surface plasmon resonance (SPR) is a powerful technique to investigate these parameters. However, results are often complicated because of impaired conformations by inappropriate conditions required for protein immobilization and/or heterogeneity of the orientation of immobilization. In addition, conventional SPR experiments are generally time-consuming. Here we introduce the use of single-site specifically biotinylated kinases combined with a multichannel SPR device to improve such problems. Kinetic parameters of four compounds—staurosporine, dasatinib, sunitinib, and lapatinib—against six kinases were determined by the ProteOn XPR36 system. The very slow off-rate of lapatinib from the epidermal growth factor receptor and dasatinib from Bruton’s tyrosine kinase and colony stimulating factor 1 receptor (CSF1R) were confirmed. Furthermore, IC50 values were determined by an activity-based assay. Evaluating both physicochemical and biochemical properties would help to understand the detailed character of the compound.


2013 ◽  
Vol 24 (7) ◽  
pp. 883-886 ◽  
Author(s):  
Robert V. Stahelin

Surface plasmon resonance (SPR) is a powerful technique for monitoring the affinity and selectivity of biomolecular interactions. SPR allows for analysis of association and dissociation rate constants and modeling of biomolecular interaction kinetics, as well as for equilibrium binding analysis and ligand specificity studies. SPR has received much use and improved precision in classifying protein–protein interactions, as well as in studying small-molecule ligand binding to receptors; however, lipid–protein interactions have been underserved in this regard. With the field of lipids perhaps the next frontier in cellular research, SPR is a highly advantageous technique for cell biologists, as newly identified proteins that associate with cellular membranes can be screened rapidly and robustly for lipid specificity and membrane affinity. This technical perspective discusses the conditions needed to achieve success with lipid–protein interactions and highlights the unique lipid–protein interaction mechanisms that have been elucidated using SPR. It is intended to provide the reader a framework for quantitative and confident conclusions from SPR analysis of lipid–protein interactions.


2002 ◽  
Vol 362 (3) ◽  
pp. 725-731 ◽  
Author(s):  
Sonja KRUGMANN ◽  
Matthew A. COOPER ◽  
Dudley H. WILLIAMS ◽  
Phillip T. HAWKINS ◽  
Len R. STEPHENS

Type IB phosphoinositide 3OH-kinase (PI3K) is activated by G-protein βγ subunits (Gβγs). The enzyme is soluble and largely cytosolic in vivo. Its substrate, PtdIns(4,5)P2, and the Gβγs are localized at the plasma membrane. We have addressed the mechanism by which Gβγs regulate the PI3K using an in vitro approach. We used sedimentation assays and surface plasmon resonance to determine association of type IB PI3K with lipid monolayers and vesicles of varying compositions, some of which had Gβγs incorporated. Association and dissociation rate constants were determined. Our results indicated that in an assay situation in vitro the majority of PI3K will be associated with lipid vesicles, irrespective of the presence or absence of Gβγs. In line with this, a constitutively active membrane-targeted PI3K construct could still be activated substantially by Gβγs in vitro. We conclude that Gβγs activate type IB PI3K by a mechanism other than translocation to the plasma membrane.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marten Beeg ◽  
Alessandro Nobili ◽  
Barbara Orsini ◽  
Francesca Rogai ◽  
Daniela Gilardi ◽  
...  

2016 ◽  
Vol 161 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Natsuki Fukuda ◽  
Yoshiaki Suwa ◽  
Makiyo Uchida ◽  
Yoshihiro Kobashigawa ◽  
Hideshi Yokoyama ◽  
...  

The Analyst ◽  
2019 ◽  
Vol 144 (15) ◽  
pp. 4526-4533 ◽  
Author(s):  
Pan Li ◽  
Meihong Ge ◽  
Chentai Cao ◽  
Dongyue Lin ◽  
Liangbao Yang

Fe3O4/Au composites demonstrated a coupled enhanced mechanism allowing for sensitive detection of dopamine in complicated specimens subjected to simple pretreatment.


Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3460-3468 ◽  
Author(s):  
Kerrie A. Smith ◽  
Penelope J. Adamson ◽  
Richard J. Pease ◽  
Jane M. Brown ◽  
Anthony J. Balmforth ◽  
...  

Abstract Fibrinogen αC residues 242-424 have been shown to have a major regulatory role in the activation of factor XIII-A2B2 (FXIII-A2B2); however, the interactions underpinning this enhancing effect have not been determined. Here, we have characterized the binding of recombinant (r)FXIII-A subunit and FXIII-A2B2 with fibrin(ogen) and fibrin αC residues 233-425. Using recombinant truncations of the fibrin αC region 233-425 and surface plasmon resonance, we found that activated rFXIII-A bound αC 233-425 (Kd of 2.35 ± 0.09μM) which was further localized to αC 389-403. Site-directed mutagenesis of this region highlighted Glu396 as a key residue for binding of activated rFXIII-A. The interaction was specific for activated rFXIII-A and depended on the calcium-induced conformational change known to occur in rFXIII-A during activation. Furthermore, nonactivated FXIII-A2B2, thrombin-cleaved FXIII-A2B2, and activated FXIII-A2B2 each bound fibrin(ogen) and specifically αC region 371-425 with high affinity (Kd < 35nM and Kd < 31nM, respectively), showing for the first time the potential involvement of the αC region in binding to FXIII-A2B2. These results suggest that in addition to fibrinogen γ′ chain binding, the fibrin αC region also provides a platform for the binding of FXIII-A2B2 and FXIII-A subunit.


2020 ◽  
Vol 12 (18) ◽  
pp. 1633-1645
Author(s):  
Wei-Wei Ni ◽  
Hai-Lian Fang ◽  
Ya-Xi Ye ◽  
Wei-Yi Li ◽  
Chu-Ping Yuan ◽  
...  

Background: Identification of novel Ure inhibitors with high potency has received considerable attention. Methodology & results: Ure inhibition was determined using the indophenol method, the affinities to Ure were estimated via surface plasmon resonance. Seventeen new plus ten known N-monosubstituted thiosemicarbazides were synthesized and identified as novel Ure inhibitors. Out of these compounds, compound b5 shows excellent activity against both crude Ure from Helicobacter pylori (IC50 = 0.04 μM) and Ure in living cell (IC50 = 0.27 μM), with the potency being over 600-fold higher than clinical used drug acetohyroxamic acid, respectively. Surface plasmon resonance demonstrated the high affinity ( Kd.#x00A0;= 6.32 nM) of b5 to Ure. Conclusion: This work provides a class of novel and promising Ure inhibitors.


Sign in / Sign up

Export Citation Format

Share Document