scholarly journals Data-driven modelling approach to circadian temperature rhythm profiles in free-living conditions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jari Lipsanen ◽  
Liisa Kuula ◽  
Marko Elovainio ◽  
Timo Partonen ◽  
Anu-Katriina Pesonen

AbstractThe individual variation in the circadian rhythms at the physiological level is not well understood. Albeit self-reported circadian preference profiles have been consolidated, their premises are grounded on human experience, not on physiology. We used data-driven, unsupervised time series modelling to characterize distinct profiles of the circadian rhythm measured from skin surface temperature in free-living conditions. We demonstrate the existence of three distinct clusters of individuals which differed in their circadian temperature profiles. The cluster with the highest temperature amplitude and the lowest midline estimating statistic of rhythm, or rhythm-adjusted mean, had the most regular and early-timed sleep–wake rhythm, and was the least probable for those with a concurrent delayed sleep phase, or eveningness chronotype. While the clusters associated with the observed sleep and circadian preference patterns, the entirely unsupervised modelling of physiological data provides a novel basis for modelling and understanding the human circadian functions in free-living conditions.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1376-P
Author(s):  
GREGORY P. FORLENZA ◽  
BRUCE BUCKINGHAM ◽  
JENNIFER SHERR ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 207-OR
Author(s):  
BRUCE A. BUCKINGHAM ◽  
JENNIFER SHERR ◽  
GREGORY P. FORLENZA ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

2010 ◽  
Vol 7 (6) ◽  
pp. 706-717 ◽  
Author(s):  
Weimo Zhu ◽  
Miyoung Lee

Background:The purpose of this study was to investigate the validity and reliability evidences of the Omron BI pedometer, which could count steps taken even when worn at different locations on the body.Methods:Forty (20 males and 20 females) adults were recruited to walk wearing 5 sets, 1 set at a time, of 10 BI pedometers during testing, 1 each at 10 different locations. For comparison, they also wore 2 Yamax Digi-Walker SW-200 pedometers and a Dynastream AMP 331 activity monitor. The subjects walked in 3 free-living conditions: a fat sidewalk, stairs, and mixed conditions.Results:Except for a slight decrease in accuracy in the pant pocket locations, Omron BI pedometers counted steps accurately across other locations when subjects walked on the fat sidewalk, and the performance was consistent across devices and trials. When the subjects climbed up stairs, however, the absolute error % of the pant pocket locations increased significantly (P < .05) and similar or higher error rates were found in the AMP 331 and SW-200s.Conclusions:The Omron BI pedometer can accurately count steps when worn at various locations on the body in free-living conditions except for front pant pocket locations, especially when climbing stairs.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4154
Author(s):  
Emily Bell ◽  
Sabrina Binkowski ◽  
Elaine Sanderson ◽  
Barbara Keating ◽  
Grant Smith ◽  
...  

The optimal time to bolus insulin for meals is challenging for children and adolescents with type 1 diabetes (T1D). Current guidelines to control glucose excursions do not account for individual differences in glycaemic responses to meals. This study aimed to examine the within- and between-person variability in time to peak (TTP) glycaemic responses after consuming meals under controlled and free-living conditions. Participants aged 8–15 years with T1D ≥ 1 year and using a continuous glucose monitor (CGM) were recruited. Participants consumed a standardised breakfast for six controlled days and maintained their usual daily routine for 14 free-living days. CGM traces were collected after eating. Linear mixed models were used to identify within- and between-person variability in the TTP after each of the controlled breakfasts, free-living breakfasts (FLB), and free-living dinners (FLD) conditions. Thirty participants completed the study (16 females; mean age and standard deviation (SD) 10.5 (1.9)). The TTP variability was greater within a person than the variability between people for all three meal types (between-person vs within-person SD; controlled breakfast 18.5 vs 38.9 minutes; FLB 14.1 vs 49.6 minutes; FLD 5.7 vs 64.5 minutes). For the first time, the study showed that within-person variability in TTP glycaemic responses is even greater than between-person variability.


2021 ◽  
Author(s):  
Kaja Kastelic ◽  
Marina Dobnik ◽  
Stefan Loefler ◽  
Christian Hofer ◽  
Nejc Šarabon

BACKGROUND Wrist worn consumer-grade activity trackers are popular devices, developed mainly for personal use, but with the potential to be used also for clinical and research purposes. OBJECTIVE The objective of this study was to explore the validity, reliability and sensitivity to change of movement behaviours metrics from three popular activity trackers (POLAR Vantage M, Garmin Vivosport and Garmin Vivoactive 4s) in controlled and free-living conditions when worn by older adults. METHODS Participants (n = 28; 74 ± 5 years) underwent a videotaped laboratory protocol while wearing all three activity trackers. On a separate occasion, participants wore one (randomly assigned) activity tracker and a research grade physical activity monitor ActiGraph wGT3X-BT simultaneously for six consecutive days for comparisons. RESULTS Both Garmin activity trackers showed excellent performance for step counts, with mean absolute percentage error (MAPE) below 20 % and intraclass correlation coefficient (ICC2,1) above 0.90 (P < .05), while Polar Vantage M substantially over counted steps (MAPE = 84 % and ICC2,1 = 0.37 for free-living conditions). MAPE for sleep time was within 10 % for all the trackers tested, while far beyond 20 % for all the physical activity and calories burned outputs. Both Garmin trackers showed fair agreement (ICC2,1 = 0.58–0.55) for measuring calories burned when compared with ActiGraph. CONCLUSIONS Garmin Vivoactive 4s showed overall best performance, especially for measuring steps and sleep time in healthy older adults. Minimal detectible change was consistently lower for an average day measures than for a single day measure, but still relatively high. The results provided in this study could be used to guide choice on activity trackers aiming for different purposes – individual use/care, longitudinal monitoring or in clinical trial setting.


2000 ◽  
Vol 84 (4) ◽  
pp. 531-539 ◽  
Author(s):  
Jérôme Ribeyre ◽  
Nicole Fellmann ◽  
Jean Vernet ◽  
Michel Delaître ◽  
Alain Chamoux ◽  
...  

The objectives of the study were to determine: (1) daily energy expenditure (EE) of athletic and non-athletic adolescents of both sexes in free-living conditions; (2) day-to-day variations in daily EE during 1 week; (3) energy costs of the main activities; and (4) the effect of usual activity on EE during sleep, seated and miscellaneous activities. Fifty adolescents (four groups of eleven to fifteen boys or girls aged 16–19 years) participated in the study. Body composition was measured by the skinfold-thickness method, and VO2max and external mechanical power (EMP) by a direct method (respiratory gas exchanges) on a cycloergometer. Daily EE and partial EE in free-living conditions were computed from heart-rate (HR) recordings during seven consecutive days using individual prediction equations established from the data obtained during a 24 h period spent in whole-body calorimeters with similar activities. Fat-free mass (FFM), VO2max, EMP, daily EE and EE during sleep were significantly higher in athletic than in non-athletic subjects. After adjustment for FFM, VO2max, EMP, daily EE and EE during exercise were still higher in athletic than in non-athletic adolescents (P<0·001). However, adjusted sleeping EE was not significantly different between athletic and non-athletic adolescents. Increases in exercise EE were partly compensated for by significant reductions in EE during schoolwork and miscellaneous activities. Thus, the differences in daily EE between athletic and non-athletic subjects resulted mainly from increases in FFM and EE during exercise (duration and energy cost).


Author(s):  
Chiaki Tanaka ◽  
Yuki Hikihara ◽  
Shigeru Inoue ◽  
Shigeho Tanaka

Background: We examined whether daily step counts under free-living conditions differed among four types of pedometers used by primary school children. Methods: In Study one, we compared the Yamax SW-200 (widely used in research) and the Kenz Lifecorder (accelerometer-based pedometer) in 30 children (6–12 years). In Study two, after confirming good correlation between these devices, we used Kenz Lifecorder as the criterion device and compared it with the Yamasa EX-200 (pants pocket-type pedometer) and the Omron Active style Pro (accelerometer-based pedometer) among 48 (7–12 years) or 108 children (7–12 years). Results: In Study one, comparable mean step counts between pedometers were observed. The correlation was strong (r = 0.91); the average difference between these two pedometers was +4.5%. In Study two, the average differences between Kenz Lifecorder and Yamasa EX-200 and Kenz Lifecorder and Omron Active style Pro were −7.9% and −18.2%, respectively, and those were not significantly equivalent according to the two one-sided-tests method. The correlations between Yamasa or Omron Active style Pro and Lifecorder were moderate and strong, respectively. Conclusions: The choice of pedometer had a substantial impact on step counts. A consensus on the appropriate pedometer for quantifying daily step counts is needed for evidence-based recommendations for health promotion.


Sign in / Sign up

Export Citation Format

Share Document