scholarly journals The prevalence of inorganic mercury in human cells increases during aging but decreases in the very old

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roger Pamphlett

AbstractSuccessful aging is likely to involve both genetic and environmental factors, but environmental toxicants that accelerate aging are not known. Human exposure to mercury is common, and mercury has genotoxic, autoimmune, and free radical effects which could contribute to age-related disorders. The presence of inorganic mercury was therefore assessed in the organs of 170 people aged 1–104 years to determine the prevalence of mercury in human tissues at different ages. Mercury was found commonly in cells of the brain, kidney, thyroid, anterior pituitary, adrenal medulla and pancreas. The prevalence of mercury in these organs increased during aging but decreased in people aged over 80 years. People with mercury in one organ usually also had mercury in several others. In conclusion, the prevalence of inorganic mercury in human organs increases with age. The relative lack of tissue mercury in the very old could account for the flattened mortality rate and reduced incidence of cancer in this advanced age group. Since mercury may accelerate aging, efforts to reduce atmospheric mercury pollution could improve the chances of future successful aging.

2014 ◽  
Vol 142 (12) ◽  
pp. 2672-2683 ◽  
Author(s):  
C. ROUBAUD BAUDRON ◽  
X. PANHARD ◽  
O. CLERMONT ◽  
F. MENTRÉ ◽  
B. FANTIN ◽  
...  

SUMMARYTo explore the specificities ofEscherichia colibacteraemia in the elderly, the demographic, clinical and bacteriological characteristics and in-hospital mortality rate of ‘young’ (18–64 years,n = 395), ‘old’ (65–79 years,n = 372) and ‘very old’ (⩾80 years,n = 284) adult patients of the multicentre COLIBAFI cohort study were compared. Clinical and bacteriological risk factors for death were jointly identified by logistic regression and multivariate analysis within each group. ‘Young’ and ‘old’ patients had more comorbidities than ‘very old’ patients (comorbidity score: 1·5 ± 1·3 and 1·6 ± 1·2vs. 1·2 ± 1·2, respectively;P < 0·001), and were more frequently nosocomially infected (22·3% and 23·8%vs. 8·8%, respectively;P < 0·001). ‘Old’ patients had the poorest prognosis (death rate: 16·4%vs.10·4% for ‘young’ and 12·0% for ‘very old’ patients, respectively;P = 0·039). Risk factors for death were age group-specific, suggesting a host–pathogen relationship evolving with age.


Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 383
Author(s):  
Bogdan-Alexandru Gheban ◽  
Horațiu Alexandru Colosi ◽  
Ioana-Andreea Gheban-Rosca ◽  
Bogdan Pop ◽  
Ana-Maria Teodora Domșa ◽  
...  

Background and objectives: The pineal gland is a photoneuroendocrine organ in the midline of the brain, responsible primarily for melatonin synthesis. It is composed mainly of pinealocytes and glial tissue. This study examined human postmortem pineal glands to microscopically assess age-related changes using digital techniques, and offers a perspective on evolutionary tendencies compared to the past. Materials and Methods: A retrospective autopsy study has been performed on 72 pediatric and adult autopsy cases. The glands have been processed for histological analysis and immunohistochemical staining with glial fibrillary acidic protein (GFAP). Slides were assessed under polarized light and digitally scanned. Morphometric data were obtained using CaseViewer and ImageJ. Results: Thirty-three females and 39 males were included in the study, grouped under three age groups: 0–25, 46–65, and 66–96 years of age. The peak gland volume was found within the 46–65 age group, the overall mean volume was 519 mm3, the main architectural types were lobular and insular, and the mean percentage of pineal calcification was 15% of the gland, peaking within the 66–96 age group, with a predominantly globular shape. Glial cysts were found in 20.8% of cases. The intensity of GFAP stain was maximal in the pediatric age group, but the extent of glial tissue was much larger in elderly patients. Discussion: The degenerative process of the pineal gland can be quantified by measuring normal parenchyma, calcifications, glial tissue, and glial cysts. Morphometric differences have been observed and compared to a similar studies performed in the published literature. The current study, unfortunately, lacks a 26–45 age group. Digital techniques seemed to offer a more exact analysis, but returned similar results to studies performed over 40 years ago, therefore offering important information on evolutionary tendencies. Conclusions: Increase in glial tissue, calcifications, and glial cysts have a defining role as age-related changes in the pineal gland.


2013 ◽  
Vol 15 (1) ◽  
pp. 45-52 ◽  

Aging is a physiological process that can develop without the appearance of concurrent diseases. However, very frequently, older people suffer from memory loss and an accelerated cognitive decline. Studies of the neurobiology of aging are beginning to decipher the mechanisms underlying not only the physiology of aging of the brain but also the mechanisms that make people more vulnerable to cognitive dysfunction and neurodegenerative diseases. Today we know that the aging brain retains a considerable functional plasticity, and that this plasticity is positively promoted by genes activated by different lifestyle factors. In this article some of these lifestyle factors and their mechanisms of action are reviewed, including environmental enrichment and the importance of food intake and some nutrients. Aerobic physical exercise and reduction of chronic stress are also briefly reviewed. It is proposed that lifestyle factors are powerful instruments to promote healthy and successful aging of the brain and delay the appearance of age-related cognitive deficits in elderly people.


2001 ◽  
Vol 56 (11-12) ◽  
pp. 921-929 ◽  
Author(s):  
Kleopatra Schulpis ◽  
Artemis Doulgeraki ◽  
Stylianos Tsakiris

Abstract The process of brain aging is an interaction of age-related losses and compensatory mechanisms. This review is focused on the changes of the synaptic number and structure, their functional implications, regarding neurotransmission, as well as the electrical activity of neuronal circuits. Moreover, the importance of calcium homeostasis is strongly emphasized. It is also suggested that many neuronal properties are preserved, as a result of adaptive mechanisms, and that a series of interdependent factors regulate brain aging. The "new fron­ tier" in research is the challenge of understanding the effects of aging, both to prevent degen­ erative diseases and reduce their consequences. New aspects are considered a) the role of nitric oxide, b) free radicals and apoptosis, c) impaired cerebral microcirculation, d) m eta­ bolic features of aging brain, e) the possible neuroprotective role of insulin-like growth factor-1 (IGF-1) and ovarian steroids and e) stress and aging. These numerous multifactorial approaches are essential to understand the process of aging. The more we learn about it, the more we realize how to achieve "successful" aging. M inireview


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


Author(s):  
Elisa M. Trucco ◽  
Gabriel L. Schlomer ◽  
Brian M. Hicks

Approximately 48–66% of the variation in alcohol use disorders is heritable. This chapter provides an overview of the genetic influences that contribute to alcohol use disorder within a developmental perspective. Namely, risk for problematic alcohol use is framed as a function of age-related changes in the relative contribution of genetic and environmental factors and an end state of developmental processes. This chapter discusses the role of development in the association between genes and the environment on risk for alcohol use disorder. Designs used to identify genetic factors relevant to problematic alcohol use are discussed. Studies examining developmental pathways to alcohol use disorder with a focus on endophenotypes and intermediate phenotypes are reviewed. Finally, areas for further investigation are offered.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Roger Pamphlett ◽  
Philip A. Doble ◽  
David P. Bishop

The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1–20 years, 66% at 21–40 years, 77% at 41–60 years, 84% at 61–80 years, and 64% at 81–104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted.


Sign in / Sign up

Export Citation Format

Share Document