scholarly journals Integrating object detection and image segmentation for detecting the tool wear area on stitched image

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan-Ju Lin ◽  
Jian-Wen Chen ◽  
Jian-Ping Jhuang ◽  
Meng-Shiun Tsai ◽  
Che-Lun Hung ◽  
...  

AbstractFlank wear is the most common wear that happens in the end milling process. However, the process of detecting the flank wear is cumbersome. To achieve comprehensively automatic detecting the flank wear area of the spiral end milling cutter, this study proposed a novel flank wear detection method of combining the template matching and deep learning techniques to expand the curved surface images into panorama images, which is more available to detect the flank wear areas without choosing a specific position of cutting tool image. You Only Look Once v4 model was employed to automatically detect the range of cutting tips. Then, popular segmentation models, namely, U-Net, Segnet and Autoencoder were used to extract the areas of the tool flank wear. To evaluate the segmenting performance among these models, U-Net model obtained the best maximum dice coefficient score with 0.93. Moreover, the predicting wear areas of the U-Net model is presented in the trend figure, which can determine the times of the tool change depend on the curve of the tool wear. Overall, the experiments have shown that the proposed methods can effectively extract the tool wear regions of the spiral cutting tool. With the developed system, users can obtain detailed information about the cutting tool before being worn severely to change the cutting tools in advance.

Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


1969 ◽  
Vol 91 (3) ◽  
pp. 790-796 ◽  
Author(s):  
A. Bhattacharyya ◽  
I. Ham

Cutting tools of sufficient strength against failure by brittle fracture or loss of “form stability” through rise of interface temperatures, still continue to fail by a process of “wear,” which is loss of cutting tool material through gradual interaction between the work and the tool material. Such wear can take place either at the principal flank surface or at the top face of the cutting tool for roughing and semiroughing cuts. Wear may also occur at the auxiliary flank surface resulting in grooving wear during fine machining or machining of high strength materials. The causes for such wear processes include (i) mechanical interaction (abrasion or adhesion and transfer type), (ii) thermochemical interaction (diffusion or chemical reaction). As a part of this investigation on tool wear, two theoretical models have been proposed for explaining mechanical wear at the flank surface. These models explain the nature and characteristics of wear growth and the sensitiveness and dependence of interaction phenomena between the tool-work pair.


2014 ◽  
Vol 564 ◽  
pp. 538-542
Author(s):  
Naain Shari ◽  
B.T. Hang Tuah bin Baharudin ◽  
Norsilawati Ngah ◽  
M.F.C. Ibrahim

The complexity of mould shapes and the hardness of the mould material contribute to difficulties in machining. Examination of the capability of atypeof cutting tool (Tungsten Carbide Ball Nose) towards machining mould material that is usually used in Injection Moulding Industries. Following this, an experimental work was detailed relating to the use of ball nose end mill to machine hardened injection mould materials (up to 62 HRC).Surface roughness, surface topography and tool wear data were presented. The relationships of all these three properties respect to each other were also investigated. By machining these materials (Stavax, Stainless Steel, DF3 and XW5), a major wear occur on cutting tool which is called flank wear. Theflank wear is increased by increasing the hardness of the material used. This fact was supported by the result obtained, in which the surface roughness increases when the material hardness increased. Surface topography isdescribed through wavy marks and surface tearing. For 2 and 4-flute cutting tools, the waviness phenomenal ondecreases when material hardness was increased. Meanwhile, for surface tearing, the rate of occurrence is proportional to the increment of the material hardness.


2016 ◽  
Vol 834 ◽  
pp. 90-95
Author(s):  
Rudolf Zaujec ◽  
Peter Pokorný

This paper presents research on the influence of CAM strategies for wear and durability of milling tools. We used two machining principles in this process. In the first instance was constant point of contact with the tool and machining surface. The second method was changing point of the cutting edge in the milling process. Material of tool was hard alloy and high speed steel for machining steel 40CrMnMo7 and C45. The shape of cutting tool was a “Ball Nose” end mill. A DMU 85 monoBLOCK 5-axis CNC milling machine was used. The cutting tool wear was measured in Zoller Genius 3, universal measuring machine and digital microscope, Dino lite 2. The results show differences of cutting tool wear depending on the milling strategy and material of tool.


2015 ◽  
Vol 667 ◽  
pp. 231-236 ◽  
Author(s):  
Xiao Fan Yang ◽  
You Sheng Li ◽  
Guo Hong Yan ◽  
Ju Dong Liu ◽  
Dong Min Yu

Carbon fiber-reinforced plastics (CFRP) are typical difficult-to-machine materials, which is easy to produce many defects such as burrs, dilacerations, layering in milling process. And selecting the appropriate cutting tool has become the key to machining CFRP with high quality and efficiency. In the paper, the machining principle of milling CFRP with new type end mill was analyzed. The diamond coating of general right-hand end mill, cross-flute router and fine-cross-nick router were used to cutting CFRP under the same cutting condition. Through the comparative analysis of the workpiece’s surface quality and tool wear, it concluded that: compared with right-hand diamond coated end mill, cross-flute diamond coated router or fine-cross-nick diamond coated router could effectively suppress the appearance of burrs and dilacerations; abnormal coating peeling appeared in the flank face of right-hand diamond coated end mill, forming the boundary wear, which accelerated wear failure; the flank wear of diamond coated cross-flute router and fine-cross-nick router were both abrasive wear. Due to having more cutting edge than cross-flute router in cutting process, the flank wear of fine-cross-nick router was slower, and the tool life was longer. So it was more suitable for cutting CFRP.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Jinxing Wu ◽  
Lin He ◽  
Yanying Wu ◽  
Chaobiao Zhou ◽  
Zhongfei Zou ◽  
...  

Tool-chip friction increases cutting temperature, aggravates tool wear, and shortens the service life of cutting tools. A micro-groove design of the rake face can improve the wear performance of the tool. In this study, we used the finite element simulation “Deform” to obtain the temperature field distribution of the tool rake face. The size of the micro-groove was determined by selecting a suitable temperature field combined with the characteristics of tool–chip flow in the cutting process, and the tool was prepared using powder metallurgy. The three-direction cutting forces and tool tip temperature were obtained by a cutting test. Compared with the original turning tool, the cutting force and cutting temperature of the micro-groove tool were reduced by more than 20%, the friction coefficient was reduced by more than 14%, the sliding energy was reduced and the shear energy was greatly decreased. According to the analysis of tool wear by SEM (scanning electron microscope) and EDS (energy dispersive X-ray spectroscopy), the crater wear, adhesive wear and oxidation wear of the micro-groove tool were lower than those of the original turning tool. In particular, the change in the crater wear area on the rake face of the original tool and the micro-groove tool was consistent with the cutting temperature and the wear width of the flank face. On the whole, the crater wear area and the change rate of the crater wear area of the micro-groove tool were smaller. Due to the proper microgroove structure of the rake face, the tool-chip contact area decreased, and the second rake angle of the tool became larger. Hence, the tool-chip friction, cutting forces, cutting energy consumption were reduced, tool wear was improved, and the service life of the micro-groove tool was five times longer than that of the original tool.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


2012 ◽  
Vol 6 (4-5) ◽  
pp. 431-437 ◽  
Author(s):  
Jilin Zhang ◽  
Chen Zhang ◽  
Song Guo ◽  
Laishui Zhou

Author(s):  
Zhaoyao Shi ◽  
Zhipeng Feng ◽  
Peng Wang

Abstract Milling involute tooth surface with universal cutting tool overcomes the difficult problem of customizing tool for nonstandard gear machining. It is difficult for gear manufacturers to gain an advantage in market competition because of the long cycle of customized cutting tools. In this paper, the milling path of involute tooth surface by a general cutting tool is studied, and how to obtain the uniform surface roughness of involute tooth surface and the cutting path scheme of cutting tool is discussed. The key point of this paper is to put forward the scheme of tool path in the milling process. The end profile of involute gear is modeled by an analytic method, and the equidistant contour of the profile of involute gear is established by using the principle of normal deviation, which provides an accurate position point for the cutting tool.


Sign in / Sign up

Export Citation Format

Share Document