scholarly journals PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahito Ohira ◽  
Suguru Nakagawa ◽  
Jumpei Takeshita ◽  
Hiroyuki Aburatani ◽  
Hiroyuki Kugoh

AbstractMelanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.

2011 ◽  
Vol 301 (4) ◽  
pp. L427-L440 ◽  
Author(s):  
Aparajita Das ◽  
Sunil Acharya ◽  
Koteswara Rao Gottipati ◽  
James B. McKnight ◽  
Hemakumar Chandru ◽  
...  

Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the lung. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defense. In this study, we identified functionally important transcription factor binding sites in the TTF-1 proximal promoter and studied tumor necrosis factor-α (TNF-α) regulation of TTF-1 expression. TNF-α, a proinflammatory cytokine, has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) and inhibits surfactant protein levels. Deletion analysis of TTF-1 5′-flanking DNA indicated that the TTF-1 proximal promoter retained high-level activity. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and mutational analysis experiments identified functional ZBP-89, Sp1, Sp3, and TTF-1 sites in the TTF-1 proximal promoter. TNF-α inhibited TTF-1 protein levels in H441 and primary alveolar type II cells. TNF-α inhibited TTF-1 gene transcription and promoter activity, indicating that transcriptional mechanisms play important roles in the inhibition of TTF-1 levels. TNF-α inhibited TTF-1 but not Sp1 or hepatocyte nuclear factor-3 DNA binding to TTF-1 promoter. Transactivation experiments in A549 cells indicated that TNF-α inhibited TTF-1 promoter activation by exogenous Sp1 and TTF-1 without altering their levels, suggesting inhibition of transcriptional activities of these proteins. TNF-α inhibition of TTF-1 expression was associated with increased threonine, but not serine, phosphorylation of Sp1. Because TTF-1 serves as a positive regulator for surfactant protein gene expression, TNF-α inhibition of TTF-1 expression could have important implications for the reduction of surfactant protein levels in diseases such as ARDS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaodan Zhong ◽  
Tao Wang ◽  
Yang Xie ◽  
Mengwen Wang ◽  
Wenjun Zhang ◽  
...  

Graphical AbstractIn mouse model of chronic diabetes mellitus, persistent hyperglycemia impaired thrombin-thrombomodulin-EPCR dependent PC activation. The reduced aPC-dependent cytoprotective signaling via PAR1/EPCR supressed OTUB1 expression resulting in augmented K48 ubiquitination and proteasomal degradation of the transcription factor YB-1. Within the nucleus, YB-1 binds to MEF2B promoter and restrains its transcription. Accordingly, ubiquitination and reduced protein levels of YB-1 compromised its inhibitory effect on MEF2B promoter and enhanced MEF2B mRNA transcription. Subsequently, elevated MEF2B expression disrupted the homeostasis of cardiomyocytes, rendering them susceptible to DCM. Exogenous administration of PC restores OTUB1/YB-1/MEF2B dependent cytoprotective responses and ameliorates development of DCM.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Valeria Valsecchi ◽  
Giusy Laudati ◽  
Ornella Cuomo ◽  
Rossana Sirabella ◽  
Lucio Annunziato ◽  
...  

AbstractRemote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at −23/−17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii314-iii314
Author(s):  
Amir Arabzade ◽  
Yanhua Zhao ◽  
Srinidhi Varadharajan ◽  
Hsiao-Chi Chen ◽  
Austin Stuckert ◽  
...  

Abstract RATIONALE Over 70% of supratentorial (ST) ependymoma are characterized by an oncogenic fusion between C11ORF95 and RELA. C11ORF95-RELA fusion is frequently the sole genetic driver detected in ST ependymoma, thus ranking this genomic event as a lead target for therapeutic investigation. RELA is a transcription factor (TF) central to mediating NF-kB pathway activation in processes such as inflammation, cellular metabolism, and chemotaxis. HYPOTHESIS: We posited that C11ORF95-RELA acts as an oncogenic TF that aberrantly shapes the tumor epigenome to drive aberrant transcription. Approach: To this end we developed an in utero electroporation (IUE) mouse model of ependymoma to express C11ORF95-RELA during embryonic development. Our IUE approach allowed us to develop C11ORF95-RELA driven tumor models and cell lines. We comprehensively characterized the epigenome and transcriptome of C11ORF95-RELA fusion driven mouse cells by H3K27ac ChIP-seq, ATAC-seq, and RNA-seq. RESULTS This data revealed that: 1) C11ORF95-RELA directly engages ‘open’ chromatin and is enriched at regions with known RELA TF binding sites as well as novel genomic loci/motifs, 2) C11ORF95-RELA preferentially binds to both H3K27ac (active) enhancers and promoters, and 3) Bound C11ORF95-RELA promoter loci are associated with increased transcription of genes shared with human ependymoma. CONCLUSION Our findings shed light on the transcriptional mechanisms of C11ORF95-RELA, and reveal downstream targets that may represent cancer dependency genes and molecular targets.


Sign in / Sign up

Export Citation Format

Share Document