scholarly journals Aqueous mechano-bactericidal action of acicular aragonite crystals

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nobuaki Negishi ◽  
Tomohiro Inaba ◽  
Yukari Miyazaki ◽  
Genki Ishii ◽  
Yingnan Yang ◽  
...  

AbstractNanoneedle structures on dragonfly and cicada wing surfaces or black silicon nanoneedles demonstrate antibacterial phenomena, namely mechano-bactericidal action. These air-exposed, mechano-bactericidal surfaces serve to destroy adherent bacteria, but their bactericidal action in the water is no precedent to report. Calcium carbonate easily accumulates on solid surfaces during long-term exposure to hard water. We expect that aragonite nanoneedles, in particular, which grow on TiO2 during the photocatalytic treatment of calcium-rich groundwater, exhibit mechano-bactericidal action against bacteria in water. Here, we showed that acicular aragonite modified on TiO2 ceramics prepared from calcium bicarbonate in mineral water by photocatalysis exhibits mechanical bactericidal activity against E. coli in water. Unmodified, calcite-modified and aragonite-modified TiO2 ceramics were exposed to water containing E. coli (in a petri dish), and their bactericidal action over time was investigated under static and agitated conditions. The surfaces of the materials were observed by scanning electron microscopy, and the live/dead bacterial cells were observed by confocal laser scanning microscopy. As a result, the synergistic bactericidal performance achieved by mechano-bactericidal action and photocatalysis was demonstrated. Aragonite itself has a high biological affinity for the human body different from the other whisker-sharpen nanomaterials, therefore, the mechano-bactericidal action of acicular aragonite in water is expected to inform the development of safe water purification systems for use in developing countries.

2021 ◽  
Author(s):  
Nobuaki Negishi ◽  
Tomohiro Inaba ◽  
Yukari Miyazaki ◽  
Genki Ishii ◽  
Yang Yingnan ◽  
...  

Abstract Nanoneedle structures on dragonfly and cicada wing surfaces or black silicon nanoneedles demonstrate antibacterial phenomena, namely mechano-bactericidal action. These air-exposed, mechano-bactericidal surfaces serve to destroy adherent bacteria, but their bactericidal action in the water is no precedent to report. Calcium carbonate easily accumulates on surfaces during long-term exposure to hard water. We expect that aragonite nanoneedles, in particular, which grow on TiO2 during the photocatalytic treatment of calcium-rich groundwater, exhibit mechano-bactericidal action against bacteria in water. Here, we show that aragonite nanoneedles are grown on TiO2 ceramics from the calcium bicarbonate in mineral water exhibit mechano-bactericidal action against E. coli K-12 in water. Unmodified, calcite-modified as references and aragonite-modified TiO2 ceramics were exposed to water containing E. coli K-12 (in a petri dish), and their bactericidal action over time was investigated under static and agitated conditions. The surfaces of the materials were observed by scanning electron microscopy, and the live/dead bacterial cells were observed by confocal laser scanning microscopy. Further, the synergistic bactericidal performance achieved by mechano-bactericidal action and photocatalysis was demonstrated. Aragonite itself has a high biological affinity for the human body different from the other whisker-sharpen nano-materials, therefore, the mechano-bactericidal action of acicular aragonite in water is expected to inform the development of safe water purification systems for use in developing countries.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Simone Krings ◽  
Yuxiu Chen ◽  
Suzie Hingley-Wilson ◽  
Joseph L. Keddie

Background: Biocoatings are nanoporous polymer materials which encapsulate bacterial cells with carbohydrates as osmoprotectants. Here, we optimised biocoatings to offer a favourable environment for the metabolic activity of bacteria. Methods: E. coli were used as a model organism and mixed with the colloidal polymer particles (i.e. synthetic latex), inorganic nanoparticles and different carbohydrates. Films were casted and dried to create a coalesced latex film and finally rehydrated to re-establish bacterial metabolism. The toxicity of the sterile latices to the bacteria was tested by using the colourimetric redox indicator resazurin. Visualisation of the bacteria inside the biocoatings was performed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results: We introduced halloysite (clay nanotubes) to create nanoporosity, which created voids in the structure that will permit gas exchange. The biocoatings were tested in liquid and rehydrated states with resazurin to find the most promising composition ensuring bacterial viability. Rehydrated biocoatings were visualised by CLSM by tracking the constitutively expressed yellow-fluorescent protein (YFP) for viable cells and the membrane exclusion dye propidium iodide for dead cells. The structure of the biocoatings appeared to be unaffected by freeze-drying compared to chemical fixation. Following this fixation, SEM allowed the observation of the organisation of the latex polymers, halloysite and bacteria. Conclusions: The biocoatings were highly porous thanks to halloysite. E. coli survived the film formation process. Next, we will use E. coli and cyanobacteria to achieve higher efficiency for a variety of applications e.g. pollutant degradation, solar energy harvesting and carbon recycling.


2011 ◽  
Vol 77 (9) ◽  
pp. 3017-3022 ◽  
Author(s):  
Yury Shamis ◽  
Alex Taube ◽  
Natasa Mitik-Dineva ◽  
Rodney Croft ◽  
Russell J. Crawford ◽  
...  

ABSTRACTThe present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature onEscherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m3, and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control,E. colicells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that theE. colicells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposingE. colicells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane.


Author(s):  
Nimisha Srivastava ◽  
Zeeshan Fatima ◽  
Chanchal Deep Kaur ◽  
Dilshad Ali Rizvi

Background: Dermatitis is a common inflammatory skin disease that is affecting up to 25% of children and 1%-3% of adults worldwide. Paucity of exact cure for dermatitis and untoward side effects of topical immunosuppressive steroids has resulted into a great need for making use of complementary medicine to treat dermatitis. Objective: The present research work involved the development of Berberine chloride dihydrate (BCD) enthused nanovesicles i.e. ethosomes for the management of dermatitis. Method: Ethosomes were prepared by slight modification of cold method using varying concentrations of SPC (1-3%) and ethanol (10-40%) Optimized batch BCD 12 was further added to Carbopol 934P for gel formation. GEL BCD 12 was subjected to “anti-bacterial, dermatitis and skin irritation study. Result: The vesicles were in size range 142.42-398.31 nm while polydispersity index (PDI) ranges from 0.114-1.56 and for zeta potential it was from-18.8 to -39.4. Entrapment efficiency was from 46.05-88.79 %. Confocal laser scanning microscopy showed penetration depth of rhodamine enthused ethosome across rat skin upto 110 µm which was significantly higher than rhodamine solution (10 µm). In the anti-bacterial study, BCD loaded ethosomal gel (EG) showed maximum zone of inhibition of 18.5 mm against E. coli, 14.5 mm against P. aeruginosa and 23.0 mm against S. aureus. In dinitrochlorobenzene (DNCB) induced mice dermatitis model histopathology study showed marked decrease in amount of inflammatory cell nucleus in mice treated with BCD loaded ethosomal gel followed by 56% and 50 % increase in ear swelling and ear mass respectively in morphology study. Conventional marketed formulation showed nominal decrease in epidermal thickness, 66.67 % increase in ear thickness and 63.64 % increase in ear mass. Further Primary irritation index was less than 0.4 indicating negligible irritation in all the groups. Conclusion: It can be concluded that ethosomal gel is not only an efficient carrier for BCD but also proves its potential for the management of dermatitis.


2011 ◽  
Vol 78 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
Anna Rusznyák ◽  
Denise M. Akob ◽  
Sándor Nietzsche ◽  
Karin Eusterhues ◽  
Kai Uwe Totsche ◽  
...  

ABSTRACTKarstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the generaArthrobacter,Flavobacterium,Pseudomonas,Rhodococcus,Serratia, andStenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation,Arthrobacter sulfonivoransandRhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite.R. globerulusformed idiomorphous crystals with rhombohedral morphology, whereasA. sulfonivoransformed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves.


2019 ◽  
Vol 20 (14) ◽  
pp. 3604 ◽  
Author(s):  
Lucinda J. Bessa ◽  
Julia R. Manickchand ◽  
Peter Eaton ◽  
José Roberto S. A. Leite ◽  
Guilherme D. Brand ◽  
...  

Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in a large variety of infections. Their co-occurrence in the same site of infection has been frequently reported and is linked to enhanced virulence and difficulty of treatment. Herein, the antimicrobial and antibiofilm activities of an intragenic antimicrobial peptide (IAP), named Hs02, which was uncovered from the human unconventional myosin 1H protein, were investigated against several P. aeruginosa and S. aureus strains, including multidrug-resistant (MDR) isolates. The antibiofilm activity was evaluated on single- and dual-species biofilms of P. aeruginosa and S. aureus. Moreover, the effect of peptide Hs02 on the membrane fluidity of the strains was assessed through Laurdan generalized polarization (GP). Minimum inhibitory concentration (MIC) values of peptide Hs02 ranged from 2 to 16 μg/mL against all strains and MDR isolates. Though Hs02 was not able to hamper biofilm formation by some strains at sub-MIC values, it clearly affected 24 h preformed biofilms, especially by reducing the viability of the bacterial cells within the single- and dual-species biofilms, as shown by confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) images. Laurdan GP values showed that Hs02 induces membrane rigidification in both P. aeruginosa and S. aureus. Peptide Hs02 can potentially be a lead for further improvement as an antibiofilm agent.


2009 ◽  
Vol 53 (6) ◽  
pp. 2253-2258 ◽  
Author(s):  
Joe J. Harrison ◽  
William D. Wade ◽  
Sarah Akierman ◽  
Caterina Vacchi-Suzzi ◽  
Carol A. Stremick ◽  
...  

ABSTRACT Escherichia coli is refractory to elevated doses of antibiotics when it is growing in a biofilm, and this is potentially due to high numbers of multidrug-tolerant persister cells in the surface-adherent population. Previously, the chromosomal toxin-antitoxin loci hipBA and relBE have been linked to the frequency at which persister cells occur in E. coli populations. In the present study, we focused on the dinJ-yafQ-encoded toxin-antitoxin system and hypothesized that deletion of the toxin gene yafQ might influence cell survival in antibiotic-exposed biofilms. By using confocal laser scanning microscopy and viable cell counting, it was determined that a ΔyafQ mutant produced biofilms with a structure and a cell density equivalent to those of the parental strain. In-depth susceptibility testing identified that relative to wild-type E. coli, the ΔyafQ strain had up to a ∼2,400-fold decrease in cell survival after the biofilms were exposed to bactericidal concentrations of cefazolin or tobramycin. Corresponding to these data, controlled overexpression of yafQ from a high-copy-number plasmid resulted in up to a ∼10,000-fold increase in the number of biofilm cells surviving exposure to these bactericidal drugs. In contrast, neither the inactivation nor the overexpression of yafQ affected the tolerance of biofilms to doxycycline or rifampin (rifampicin). Furthermore, deletion of yafQ did not affect the tolerance of stationary-phase planktonic cells to any of the antibacterials tested. These results suggest that yafQ mediates the tolerance of E. coli biofilms to multiple but specific antibiotics; moreover, our data imply that this cellular pathway for persistence is likely different from that of multidrug-tolerant cells in stationary-phase planktonic cell cultures.


2021 ◽  
Author(s):  
Chelladurai Ajish ◽  
Sungtae Yang ◽  
S. Dinesh Kumar ◽  
Eun Young Kim ◽  
Hye Jung Min ◽  
...  

Abstract Hybridizing two known antimicrobial peptides (AMPs) is a simple and effective strategy for designing antimicrobial agents with enhanced cell selectivity against bacterial cells. Here, we generated a hybrid peptide Lf-KR in which LfcinB6 and KR-12-a4 were linked with a Pro hinge to obtain a novel AMP with potent antimicrobial, anti-inflammatory, and anti-biofilm activities. Lf-KR exerted superior cell selectivity for bacterial cells over sheep red blood cells. Lf-KR showed broad-spectrum antimicrobial activities (MIC: 4–8 mM) against tested 12 bacterial strains and retained its antimicrobial activity in the presence of salts at physiological concentrations. Membrane depolarization and dye leakage assays showed that the enhanced antimicrobial activity of Lf-KR was due to increased permeabilization and depolarization of microbial membranes. Lf-KR significantly inhibited the expression and production of pro-inflammatory cytokines (NO and TNF-a) in LPS-stimulated mouse macrophage RAW264.7 cells. In addition, Lf-KR showed a powerful eradication effect on preformed multidrug-resistant Pseudomonas aeruginosa (MDRPA) biofilms. We confirmed using confocal laser scanning microscopy that a large portion of the preformed MDRPA biofilm structure was perturbed by the addition of Lf-KR. Collectively, our results suggest that Lf-KR can be an antimicrobial, anti-inflammatory, and anti-biofilm candidate as a pharmaceutical agent.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 277
Author(s):  
Siddhi Desai ◽  
Kinjal Sanghrajka ◽  
Devarshi Gajjar

Klebsiella pneumoniae (Kp), is a frequent cause of hospital and community-acquired infections and WHO had declared it as a “priority pathogen”. Biofilm is a major virulence factor of Kp and yet the mechanism of strong biofilm formation in Kp is unclear. A key objective of the present study is to investigate the differences between strong and weak biofilms formed by clinical isolates of Kp on various catheters and in different media conditions and to identify constituents contributing to strong biofilm formation. Quantification of matrix components (extracellular DNA (eDNA), protein, exopolysaccharides (EPS), and bacterial cells), confocal laser scanning microscopy (CLSM), field emission gun scanning electron microscopy (FEG-SEM) and flow-cytometry analysis were performed to compare strong and weak biofilm matrix. Our results suggest increased biofilm formation on latex catheters compared to silicone and silicone-coated latex catheters. Higher amounts of eDNA, protein, EPS, and dead cells were observed in the strong biofilm of Kp. High adhesion capacity and cell death seem to play a major role in formation of strong Kp biofilms. The enhanced eDNA, EPS, and protein in the biofilm matrix appear as a consequence of increased cell death.


2007 ◽  
Vol 73 (13) ◽  
pp. 4300-4307 ◽  
Author(s):  
Shuyu Hou ◽  
Erik A. Burton ◽  
Karen A. Simon ◽  
Dustin Blodgett ◽  
Yan-Yeung Luk ◽  
...  

ABSTRACT Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, l-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5α by 99.5% ± 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.


Sign in / Sign up

Export Citation Format

Share Document