scholarly journals Analyses of nicotine metabolism biomarker genetics stratified by sex in African and European Americans

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meghan J. Chenoweth ◽  
Lisa Sanderson Cox ◽  
Nikki L. Nollen ◽  
Jasjit S. Ahluwalia ◽  
Neal L. Benowitz ◽  
...  

AbstractNicotine is inactivated by the polymorphic CYP2A6 enzyme to cotinine and then to 3′hydroxycotinine. The Nicotine Metabolite Ratio (NMR; 3′hydroxycotinine/cotinine) is a heritable nicotine metabolism biomarker, varies with sex and ancestry, and influences smoking cessation and disease risk. We conducted sex-stratified genome-wide association studies of the NMR in European American (EA) and African American (AA) smokers (NCT01314001, NCT00666978). In EA females (n = 389) and males (n = 541), one significant (P < 5e−8) chromosome 19 locus was found (top variant: rs56113850, CYP2A6 (intronic), for C vs. T: females: beta = 0.67, P = 7.5e−22, 21.8% variation explained; males: beta = 0.75, P = 1.2e−37, 26.1% variation explained). In AA females (n = 503) and males (n = 352), the top variant was found on chromosome 19 but differed by sex (females: rs11878604, CYP2A6 (~ 16 kb 3′), for C vs. T: beta = − 0.71, P = 6.6e−26, 16.2% variation explained; males: rs3865454, CYP2A6 (~ 7 kb 3′), for G vs. T: beta = 0.64, P = 1.9e−19, 18.9% variation explained). In AA females, a significant region was found on chromosome 12 (top variant: rs12425845: P = 5.0e−9, TMEM132C (~ 1 Mb 5′), 6.1% variation explained) which was not significant in AA males. In AA males, significant regions were found on chromosomes 6 (top variant: rs9379805: P = 4.8e−9, SLC17A2 (~ 8 kb 5′), 8.0% variation explained) and 16 (top variant: rs77368288: P = 3.5e−8, ZNF469 (~ 92 kb 5′), 7.1% variation explained) which were not significant in AA females. Further investigation of these associations outside of chromosome 19 is required, as they did not replicate. Understanding how sex and ancestry influence nicotine metabolism genetics may improve personalized approaches for smoking cessation and risk prediction for tobacco-related diseases.

2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S221-S221
Author(s):  
Luke C Pilling ◽  
Luigi Ferrucci ◽  
David Melzer

Abstract Thousands of loci across the genome have been identified for specific diseases in genome-wide association studies (GWAS), yet very few are associated with lifespan itself. We hypothesized that specific biological pathways transcend individual diseases and affect health and lifespan more broadly. Using the published results for the most recent GWAS for 10 key age-related diseases (including coronary artery disease, type-2 diabetes, and several cancers) we identified 22 loci with a strong genetic association with at least three of the diseases. These multi-trait aging loci include known genes affecting multiple diverse health end points, such as CDKN2A/B (9p21.3) and APOE. There are also novel multi-trait genes including SH2B3 and CASC8, likely involved in hallmark pathways of aging biology, including telomere shortening and inflammation. Several of these loci involve trade-offs between chronic disease risk and cancer.


2020 ◽  
Vol 21 (12) ◽  
pp. 4269 ◽  
Author(s):  
Victoria L. Halperin Kuhns ◽  
Owen M. Woodward

Hyperuricemia, or elevated serum urate, causes urate kidney stones and gout and also increases the incidence of many other conditions including renal disease, cardiovascular disease, and metabolic syndrome. As we gain mechanistic insight into how urate contributes to human disease, a clear sex difference has emerged in the physiological regulation of urate homeostasis. This review summarizes our current understanding of urate as a disease risk factor and how being of the female sex appears protective. Further, we review the mechanisms of renal handling of urate and the significant contributions from powerful genome-wide association studies of serum urate. We also explore the role of sex in the regulation of specific renal urate transporters and the power of new animal models of hyperuricemia to inform on the role of sex and hyperuricemia in disease pathogenesis. Finally, we advocate the use of sex differences in urate handling as a potent tool in gaining a further understanding of physiological regulation of urate homeostasis and for presenting new avenues for treating the constellation of urate related pathologies.


2017 ◽  
Vol 242 (13) ◽  
pp. 1325-1334 ◽  
Author(s):  
Yizhou Zhu ◽  
Cagdas Tazearslan ◽  
Yousin Suh

Genome-wide association studies have shown that the far majority of disease-associated variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes contribute to disease risk. To identify truly causal non-coding variants and their affected target genes remains challenging but is a critical step to translate the genetic associations to molecular mechanisms and ultimately clinical applications. Here we review genomic/epigenomic resources and in silico tools that can be used to identify causal non-coding variants and experimental strategies to validate their functionalities. Impact statement Most signals from genome-wide association studies (GWASs) map to the non-coding genome, and functional interpretation of these associations remained challenging. We reviewed recent progress in methodologies of studying the non-coding genome and argued that no single approach allows one to effectively identify the causal regulatory variants from GWAS results. By illustrating the advantages and limitations of each method, our review potentially provided a guideline for taking a combinatorial approach to accurately predict, prioritize, and eventually experimentally validate the causal variants.


2021 ◽  
Author(s):  
Aleksejs Sazonovs ◽  
Christine R Stevens ◽  
Guhan R Venkataraman ◽  
Kai Yuan ◽  
Brandon Avila ◽  
...  

Genome-wide association studies (GWAS) have identified hundreds of loci associated with Crohns disease (CD); however, as with all complex diseases, deriving pathogenic mechanisms from these non-coding GWAS discoveries has been challenging. To complement GWAS and better define actionable biological targets, we analysed sequence data from more than 30,000 CD cases and 80,000 population controls. We observe rare coding variants in established CD susceptibility genes as well as ten genes where coding variation directly implicates the gene in disease risk for the first time.


2020 ◽  
Author(s):  
Samuel Hokin ◽  
Alan Cleary ◽  
Joann Mudge

Complex diseases, with many associated genetic and environmental factors, are a challenging target for genomic risk assessment. Genome-wide association studies (GWAS) associate disease status with, and compute risk from, individual common variants, which can be problematic for diseases with many interacting or rare variants. In addition, GWAS typically employ a reference genome which is not built from the subjects of the study, whose genetic background may differ from the reference and whose genetic characterization may be limited. We present a complementary method based on disease association with collections of genotypes, called frequented regions, on a pangenomic graph built from subjects' genomes. We introduce the pangenomic genotype graph, which is better suited than sequence graphs to human disease studies. Our method draws out collections of features, across multiple genomic segments, which are associated with disease status. We show that the frequented regions method consistently improves machine-learning classification of disease status over GWAS classification, allowing incorporation of rare or interacting variants. Notably, genomic segments that have few or no variants of genome-wide significance (p<5x10-8) provide much-improved classification with frequented regions, encouraging their application across the entire genome. Frequented regions may also be utilized for purposes such as choice of treatment in addition to prediction of disease risk.


2021 ◽  
Author(s):  
Steven Gazal ◽  
Omer Weissbrod ◽  
Farhad Hormozdiari ◽  
Kushal Dey ◽  
Joseph Nasser ◽  
...  

Although genome-wide association studies (GWAS) have identified thousands of disease-associated common SNPs, these SNPs generally do not implicate the underlying target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis, but it is unclear how these strategies should be applied in the context of interpreting common disease risk variants. We developed a framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk, leveraging polygenic analyses of disease heritability to define and estimate their precision and recall. We applied our framework to GWAS summary statistics for 63 diseases and complex traits (average N=314K), evaluating 50 S2G strategies. Our optimal combined S2G strategy (cS2G) included 7 constituent S2G strategies (Exon, Promoter, 2 fine-mapped cis-eQTL strategies, EpiMap enhancer-gene linking, Activity-By-Contact (ABC), and Cicero), and achieved a precision of 0.75 and a recall of 0.33, more than doubling the precision and/or recall of any individual strategy; this implies that 33% of SNP-heritability can be linked to causal genes with 75% confidence. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 7,111 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. Finally, we applied cS2G to genome-wide fine-mapping results for these traits (not restricted to GWAS loci) to rank genes by the heritability linked to each gene, providing an empirical assessment of disease omnigenicity; averaging across traits, we determined that the top 200 (1%) of ranked genes explained roughly half of the heritability linked to all genes. Our results highlight the benefits of our cS2G strategy in providing functional interpretation of GWAS findings; we anticipate that precision and recall will increase further under our framework as improved functional assays lead to improved S2G strategies. 


2018 ◽  
Author(s):  
Jianan Zhana ◽  
Jessica van Setten ◽  
Jennifer Brody ◽  
Brenton Swenson ◽  
Anne M. Butler ◽  
...  

AbstractMotivationGenome-wide association studies have had great success in identifying human genetic variants associated with disease, disease risk factors, and other biomedical phenotypes. Many variants are associated with multiple traits, even after correction for trait-trait correlation. Discovering subsets of variants associated with a shared subset of phenotypes could help reveal disease mechanisms, suggest new therapeutic options, and increase the power to detect additional variants with similar pattern of associations. Here we introduce two methods based on a Bayesian framework, SNP And Pleiotropic PHenotype Organization (SAPPHO), one modeling independent phenotypes (SAPPHO-I) and the other incorporating a full phenotype covariance structure (SAPPHO-C). These two methods learn patterns of pleiotropy from genotype and phenotype data, using identified associations to discover additional associations with shared patterns.ResultsThe SAPPHO methods, along with other recent approaches for pleiotropic association tests, were assessed using data from the Atherosclerotic Risk in Communities (ARIC) study of 8,000 individuals, whose gold-standard associations were provided by meta-analysis of 40,000 to 100,000 individuals from the CHARGE consortium. Using power to detect gold-standard associations at genome-wide significance (0.05 family-wise error rate) as a metric, SAPPHO performed best. The SAPPHO methods were also uniquely able to select the most significant variants in a parsimonious model, excluding other less likely variants within a linkage disequilibrium block. For meta-analysis, the SAPPHO methods implement summary modes that use sufficient statistics rather than full phenotype and genotype data. Meta-analysis applied to CHARGE detected 16 additional associations to the gold-standard loci, as well as 124 novel loci, at 0.05 false discovery rate. Reasons for the superior performance were explored by performing simulations over a range of scenarios describing different genetic architectures. With SAPPHO we were able to learn genetic structures that were hidden using the traditional univariate tests.Availabilityhttps://bitbucket.org/baderlab/fast/wiki/Home. SAPPHO software is available under the GNU General Public License, v2.


Sign in / Sign up

Export Citation Format

Share Document